
1 Question 1

1.1 Part a

(Xt)t is an ergodic Markov chain as P k for k = 4 results in a matrix with strictly positive entries.
It should also be noted that the Markov chain is irreducible and state 2 is aperiodic. This confirms
that (Xt)t is an ergodic Markov chain.

1.2 Part b

Using P (Xt = j|X(t−k) = i) = (P k)i,j from page 58 of the notes. Where (P k)i,j is the entry in
the ith row and jth column of the transition matrix raised to the power k. This means P (X5 =
4|X2 = 1) = (P 3)1,4 = 0.1250

1.3 Part c

To compute the stationary distribution π of the Markov chain, we need to solve π = πP and
π (1, 1, 1, 1)T = 1. Solving this linear system gives:

π = (0.0909, 0.3636, 0.2424, 0.3030)

As the Markov chain is ergodic and π is a stationary distribution then π is unique.

1.4 Part d

A Markov chain (Xt)t with transition matrix P is said to satisfy detailed balance with distribution
π if:

πi
πj
Pij = Pji ∀i, j ∈ {1, 2, 3, 4}

Through direct computation we note it does not hold for (i, j) = (2, 3):

0.3636

0.2424
0.25 = 0.375 6= 0.5

2 Question 2

2.1 Part a

To estimate E(X2) from the given distribution f(x) = k exp(−2|x|5) using a Metropolis-Hastings
sampler, we draw a sample (Xt)t and use Monte Carlo integration to compute E(X2). i.e.

E(X2) =
1

n

n∑
t=1

X2
t

Note: The normalising constant k does not need to be computed for the Metropolis-Hastings
sampler. Using a random walk Metropolis-Hastings sampler with initial value X0 = 0 and σ = 0.5,
we sample from f . Then removing the first 100 observations to allow for burn-in, we compute
the Monte Carlo estimate of E(X2) = 0.2484. To check this answer using numerical integration,
we need to compute the value of the normalising constant k = 0.6255. We wish to use numerical
integration to solve:

E(X2) =

∫ ∞
−∞

x2f(x)dx
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Placing the integrand into the integrate function on R gives a value of 0.2458 with absolute error
< 3.4e− 06. This means our Monte Carlo estimate using the sample from our Metropolis-Hastings
sampler was within 3 decimals places of the true answer.

2.2 Part b

Constructing four samples using the parameters specified in the question, we get the following trace
plot:

Figure 1: Trace plots of four samples with different starting values

As can be seen in Figure 1, 3 trace plots seem to overlap with each other and tend towards 0.
However, one trace plot does not tend towards 0. These trace plots do not appear to converge and
it is clear from the small movements shown by the trace plots that the distribution is not being
fully explored. This is due to the low value of σ = 0.01. Increasing this value of σ will increase the
exploration of the distribution and improve convergence.

2.3 Part c

We draw four samples using the parameters specified in the question and X0 = 0. We remove the
first 250 points from each sample as burn-in. The Effective Sample Size (ESS) of each sample is as
follows:

Effective sample size is the size of an iid random sample from the target distribution which
would be required to match the variance of our Metropolis-Hastings generated sample. This is due
to the Metropolis-Hastings sampler producing a sample which inherently has correlation within and
therefore degrades the quality of the sample. Due to this, we wish to choose the sample with the
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σ Effective Sample Size

0.01 5.1853
0.5 1439.1610
1 2307.5274
5 771.2703

Table 1: σ and its effect on ESS

largest Effective Sample Size, as it requires the largest iid sample to match our MCMC variance.
Looking at table 1, this occurs when σ = 1 with an ESS of 2307 with n = 9750 (after burn in).

3 Question 3

Let g(x1, x2) be the joint density of a bi-variate normal. Then we can conclude that:

(X1, X2) ∼ N

([
0
0

]
,

[
1 0.8

√
2

0.8
√

2 2

])

To construct a Gibb’s sampler for g(x1, x2), we need to construct the conditional distribution of
X1|X2 and X2|X1. For a bi-variate normal these are well known and readily available on the
Multivariate normal distribution wikipedia page. The conditional distribution is given as:

(X1|X2 = x2) ∼ N

(
µ1 +

σ1
σ2
ρ(x2 − µ2) , σ21(1− ρ2)

)

Given the values from the question; µ1, µ2 = 0, σ1 = 1, σ2 =
√

2 and ρ = 0.8, we get:

(X1|X2 = x2) ∼ N

(
0.8(x2)√

2
, (1− 0.82)

)
(1)

(X2|X1 = x1) ∼ N
(

0.8
√

2x1 , 2(1− 0.82)
)

(2)

Using results (1) and (2), we can construct a Gibb’s sampler as follows:

1. Choose initial values x01, x
0
2 for x1 and x2 respectively. For this example, I chose (x01, x

0
2) =

(0, 0) as g(x1, x2) is symmetric around (0, 0).

2. Sample (Xt
1|X2 = Xt−1

2 ) using result (1)

3. Sample (Xt
2|X1 = Xt

1) using result (2)

4. repeat steps 2 and 3 for each t = 1, . . . , 10000

We construct a sample from a bi-variate normal using the Gibb’s sampler above. We remove the
first 50 observations to allow for burn-in. We can estimate P ((X1, X2) ∈ [0, 1]× [0, 2]) by counting
the number of occurrences seen in the sample and dividing by 9950. This gives an estimate of
0.2270.
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4 Question 4

4.1 Part a

We can construct the 95% confidence intervals for T (X) using the result given on page 42 of the
notes and 10000 bootstrapped samples of X, X∗:

[T (P̂ )− c∗2σ(P̂ ), T (P̂ )− c∗1σ(P̂ )] (3)

where P̂ is the original data sample,X,
T (P ) is a function of P ,
σ(P ) is the standard deviation of P ,

c∗1, c
∗
2 are the 2.5% and 97.5% quantiles of T (P ∗)−T (P̂ )

σ(P ∗) ,

and P ∗ denotes the bootstrapped samples, X∗.
To construct an interval for E(X), we set T (X) = 1

n

∑n
i=1Xi. Using Equation (3), this gives

the interval:
(1.0761, 1.3233)

To construct an interval for E(X2), we set T (X) = 1
n

∑n
i=1X

2
i . Once again using Equation (3),

this gives the interval:
(1.7209, 2.3142)

4.2 Part b

We wish to construct a permutation test to test the hypothesis:

H0 : X,Y are independent HA : X,Y are dependent

We are asked to do this by considering the Spearman correlation coefficient. Consider the result
that X,Y are independent iff their Spearman correlation coefficient, ρ̂, is 0. We can use this to
re-state our null hypothesis as:

H0 : ρ̂ = 0 HA : ρ̂ 6= 0

We can test this null hypothesis by constructing bootstrapped samples of Y . We denote these
samples as (Y ∗1 , . . . , Y

∗
n ), and calculate ρi as the Spearman Correlation coefficient for (X,Y ∗i ) ∀i ∈

{1, . . . , 10000}. We construct a p-value for our hypothesis test using:

p =
1

10000

10000∑
i=1

1{ρi ≥ ρ̂}

This results in a p-value of 0.0003. Therefore, we reject our null hypothesis at the 95% level of
significance and conclude X and Y are not independent.
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