
1 Question 1

The data set presented contains 50 data points consisting of 5 continuous features and 1 continuous
response. Let’s consider some key summary statistics to explore the data.

x1 x2 x3 x4 x5 y

Mean 0.1703 0.2314 -0.1747 0.1562 0.4527 7.5067
Min -4.8867 -3.4736 -8.6123 -4.2361 -2.8289 -10.1835
Max 7.9114 6.4195 4.5124 2.6414 4.4669 72.9078
Standard Deviation 1.8269 1.8620 1.8386 1.2561 1.4496 12.0048
Pearson Correlation with y 0.4862 -0.0178 0.0156 -0.1414 0.1575 1

Table 1: Summary statistics of data set

Looking at Table 1, it can be seen that all 5 features have their mean near the y-axis. x1, x2,
x3, and x4 all appear to have high leverage points with either their minimum or maximum values
standing 3 to 4 standard deviations away from their means. These high leverage points may be
classified as outliers depending on the corresponding y values or other dimensions. Looking at the
Pearson correlation coefficients, we see that x1 has medium positive correlation with y. The other
4 variables display very weak to weak correlation and will likely contain little to no information
about y. It should be noted that Pearson’s correlation coefficient only measures correlation on a
linear scale. The Spearman correlation coefficients can detect monotonic relationships, however in
this case the Spearman correlation values are similarly low.

We are tasked with fitting four regression models to the above data and compare their prediction
performance. Then we will select the best performing model and use it to predict the response of
4 unseen data points. The measure of performance that will be used for comparison is the Mean
Square error which is defined as:

MSE =
1

n
(y −Xβ)T (y −Xβ) (1)

Before fitting, our data will be split into training and testing sets. The training set will consist of
80% of the data, and the testing sets will contain the remaining 20%. The models will first be fit
to the training set and performance comparison will be carried out on the testing set. This means
performance comparison will be conducted on unseen data and so should represent the models
performance on new data points, provided they come from the same original population. After
comparison, the final model will be fit to the entire data set and then used to predict the 4 new
data points.

The first model to be fitted is a simple linear model. The simple linear model is of the form:

yi = β0 + β1xi,1 + · · ·+ β5xi,5 + εi i = 1, ..., n

where ε ∼ N(0, σ2)
The simple linear model is fit using the ordinary least squares approach. This approach aims

to minimise the following loss function:

L(β) = ‖y −Xβ‖22

which using calculus, results in the following optimal value of β:

β̂ = (XTX)−1XTy (2)
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This equation is used to construct the coefficients for the simple linear model. Based on the data
exploration conducted above, it is unlikely that a simple linear model will model this data well.
This is due to, with the exception of x1, the very weak Pearson Correlation seen between the
features and the response. Therefore, β0x and β1 will be the main contributors to this model.

The second model to be fitted is an extension of the simple linear model. A regularisation term
will be added to the loss function which will restrict the values which β̂ can take. The new loss
function will be of the form:

L(β) = ‖y −Xβ‖22 + λ‖β−0‖22 (3)

where β−0 denotes the vector of coefficients excluding the intercept term. The intercept term is
excluded as described in Section 3.4.1 of The Elements of Statistical Learning by Hastie et al.

This modified loss function is minimised by the following value of β:

β̂ = (XTX + λI)−1XTy (4)

where I is a modified identity matrix with a 0 in the first diagonal and the ridge parameter λ is as
a positive constant. The identity is modified to allow for the lack of regularization on the intercept
term as mentioned above.

The ridge parameter λ controls the regularisation and the coefficients of the ridge regression
shrink towards 0 as λ→∞. It should be noted that the coefficients can never be shrunk to exactly
0. This regularisation term is usually employed to reduce multi-collinearity between the features
seen in the design matrix X. However, it can also be used to prevent over-fitting to the training
data, which will be it’s purpose in this case.

The ridge parameter will be tuned using two different optimisation methods with k-fold cross
validation. The first optimisation method will be using a grid search of possible values of λ . For
each value of λ in the grid, the mean MSE across the k folds will be calculated. The value of λ
which minimises the mean MSE across the k folds will be chosen as the optimal value. The second
approach, although similar, will use an optimizer to search for the value of λ which minimises the
mean MSE across the k folds. This should produce a more accurate and optimal value of λ though
may be more prone to over fitting.

The third model to be fitted will be a quadratic model containing all quadratic interaction
terms:

yi = β0+β1 xi,1+ · · ·+β5 xi,5+β6 x
2
i,1+ · · ·+β10 x2i,5+β11 xi,1 xi,2+ · · ·+β20 xi,4 xi,5+εi i = 1, ..., n

where ε ∼ N(0, σ2).
The loss function is unchanged and so the optimal value of β̂ remains as in Eq. (2). To account

for the quadratic interaction terms the design matrix, X, has corresponding columns added which
have the relevant transformations applied. This model will be very prone to over fitting as the
number of features, 21, is quite large relative to the number of data points in the training set, 40.
A model which has the number of features equal to the number of data points will predict the
training set perfectly but fail to generalise to unseen data. Therefore, the quadratic model should
preform well on the training set but have relatively poor performance on the test set.

The fourth model to be fitted will be a quadratic ridge regression model. This model will have
the form seen for the quadratic model but will use the loss function as in Eq. (3). Therefore, the
optimal value of β̂ remains as in Eq.(4). The optimal ridge parameter is found using both methods
as described for the linear ridge regression model.

Fitting these models to the training data set generates the follow results:
As can be seen in Table 4, we first note that the difference between the grid search and direct

optimisation of the ridge parameter, λ, is negligible. This means either can be used, provided
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Coefficients Linear
Model

Linear
Ridge

Optimised

Linear
Ridge

Grid-Search

Quadratic
model

Quadratic
Ridge

Optimised

Quadratic
Ridge

Grid-Search

Intercept 5.4406 7.4711 7.4746 0.0299 1.3938 1.4064
x1 4.4898 0.7266 0.7187 -0.858 -0.0909 -0.0862
x2 0.6862 -0.0205 -0.0205 -0.7187 -0.2706 -0.266
x3 0.0294 0.0493 0.0488 0.9392 0.1008 0.0999
x4 -1.2633 -0.1044 -0.1032 -0.5851 -0.3248 -0.322
x5 1.8304 0.1756 0.1735 -0.2599 0.0335 0.0363

x21 0 0 0 1.1451 0.9915 0.9913
x22 0 0 0 -0.153 0.0498 0.0504
x23 0 0 0 -0.0238 -0.0418 -0.0418
x24 0 0 0 0.586 0.0762 0.0746
x25 0 0 0 1.0231 0.9531 0.9497

x1 x2 0 0 0 0.3908 0.4664 0.4633
x1 x3 0 0 0 0.4015 0.3005 0.2987
x1 x4 0 0 0 1.4239 0.2692 0.263
x1 x5 0 0 0 2.4512 1.7015 1.6862
x2 x3 0 0 0 -2.2695 -0.8301 -0.8209
x2 x4 0 0 0 1.4299 0.555 0.5484
x2 x5 0 0 0 -0.3754 0.1059 0.1065
x3 x4 0 0 0 2.0805 0.2361 0.2278
x3 x5 0 0 0 -0.5787 -0.0421 -0.0414
x4 x5 0 0 0 0.402 0.156 0.1557

Ridge
Parameter

0 641.5165 650 0 48.7167 50

MSE (train) 97.0559 147.2619 147.4635 12.9594 18.202 18.3223
MSE (test) 141.0924 43.4943 43.3992 65.8084 13.5647 13.4977

Table 2: Coefficients of models fitted

sufficient coverage of the grid being searched. From here on, when referring to ridge regression,
the direct optimisation procedure will be used as it does not require a range of potential values.
Looking at the MSE of the ridge regression models, the MSE was higher on the training data
but lower on the testing data than that of the non-regularised models. This is an indicator that
the regularisation was successful in preventing over-fitting. This can been seen more clearly by
examining the differences between the first and the second model. With a ridge parameter of 641,
the linear ridge model has shrunk all of the non intercept terms towards 0. This will prevent the
over-fitting to the high leverage points mention earlier in the initial data exploration. The large
intercept term is intuitive due to the very weak correlation coefficients as mentioned previously.

Surprisingly, the linear ridge model has a much larger ridge parameter than the quadratic ridge
model. This is probably due to quadratic interaction effects modelling non-linear trends in the
data. This would need to be confirmed, potentially graphically using a pairs plot. Due to the very
low MSE on the training set, we can conclude that a quadratic model fits the data best. However,
as we wish to pick the best model for prediction purposes rather than inference, a quadratic ridge
model is most appropriate. This is due to the lower MSE seen on the test set when compared with
the non-ridge quadratic model.
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Therefore, we refit the quadratic ridge model using the direct optimisation of λ to the entire
data set. This final model is as follows:

Coefficients Final model

Intercept 1.4806
x1 -0.0679
x2 -0.1212
x3 0.0005
x4 -0.3546
x5 -0.0672

x21 0.9612
x22 0.0294
x23 -0.0557
x24 0.0761
x25 1.0775

x1 x2 0.4825
x1 x3 0.4106
x1 x4 0.306
x1 x5 1.9723
x2 x3 -0.7601
x2 x4 0.5193
x2 x5 0.217
x3 x4 0.0814
x3 x5 -0.051
x4 x5 0.0209

Ridge Parameter 32.53906
MSE (full data) 16.0946

Table 3: Coefficients of final model

Using this model to predict the 4 unseen data points provided:

x1 x2 x3 x4 x5 Predicted y

-0.95 1.76 -2.04 0.82 -0.85 6.9109
-1.27 2.58 -1.08 2.96 -1.83 13.2833
-0.17 1.3 0.78 -2.79 -0.28 0.2585
-3.48 0.99 0.78 5.18 1.45 0.1755

Table 4: Coefficients of final model

2 Question 2

We have been presented with a dataset of SMS messages with the aim of creating two Naive
Bayes spam detection models. This dataset consists of 44,066 words across 5,572 messages, with
a vocabulary length of 7,903 words. The data has been presented in its raw form, a pre-processed
form, and a sparse matrix, X, with 5,572 rows and 7,903 columns. The xij entry of this sparse
matrix represents the number of occurrences of the jth word in our vocabulary in the ith message
in our dataset. Data pre-processing of this form is difficult and time consuming and so we shall
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work directly with the provided sparse matrix, X. Before we begin the derivations of the Naive
Bayes models, we must conduct some initial data exploration. There are 747 spam messages and
the remaining 4,825 messages are classified as ham (not spam). Therefore, we are working with an
unbalanced dataset and sub-sampling may be used to address this in a smaller dataset. However, it
should not be necessary due to the number of messages contained in this dataset. A small number
of words occur very frequently in this dataset, with 10%, aprrox 4,400 words, coming from just 16
values in the vocabulary. The most frequently occurring word in the vocabulary occurred 463 times
across all messages. This can be compared to the fact that 4,308 words in our vocabulary occur just
once in the entire dataset. This leads to an interesting question, whether the sparse matrix should
be converted to a dense matrix. This could be done by simply removing all columns which do not
occur more than a chosen number or do not occur in more than a chosen number of messages.
As just seen, removing vocabulary which occurs only once, reduces our total vocabulary by more
than half. Similarly, removing words which do not occur in more than 20 messages, reduces our
vocabulary to just 406 with little penalty to performance. This poses a problem of Naive Bayes
classification and sparsity. If a word in our vocabulary xj never occurs in a spam message, then the
probability that a message containing that word is classified as spam is exactly 0. This can be dealt
with using additive smoothing (Laplace smoothing) or by converting our matrix to a dense form.
The easiest way to convert the matrix to a dense form is to remove words from our vocabulary.
However, reducing our vocabulary, will reduce future coverage of words in new unseen messages.
Including them in this instance does not have a large computational penalty. Therefore, we will
implement Laplace smoothing on our Naive Bayes models which will be explained in more detail
later. However, if our vocabulary was large enough such that it posed a computational problem, as
can be seen by the above examples, reducing the matrix can be implemented with difficulty. Both
of the two examples above, had little to no effect on classification performance.

It should be noted that there are 17 rows in X which appear to have no non-zero entries.
However, removing these data points has a large negative effect on the performance of any Naive
Bayes models fit, so there is some value provided by these rows. It is unclear why these rows
are equal to zero, as the messages in the original, and pre-processed data are non empty. If the
number of empty rows was higher, it may be beneficial to reconstruct X from the pre-processed
dataset. Due to the value being so low relative to the total amount of messages, and the large dip
in performance when removed, we will proceed with these rows included.

A Naive Bayes classifier with K classes utilises Bayes theorem to fit to the data which is given
as the following:

P (ci|xi) =
P (ci)P (xi|ci)

P (xi)
=

P (ci)P (xi|ci)∑K
k=1 P (xi|ci = k)

(5)

where xi is a data point and ci is the class of the data point.
The Naive Bayes classifier assigns a new data point x∗ to the class k which maximises the value

seen in Eq. (5). Due to this, we can drop the constant of proportionality seen in the denominator
as the posterior will be maximised when the numerator is maximised. Therefore, for the remainder
of the report we will be working with:

P (ci = k|xi) ∝ P (ci = k)P (xi|ci = k)

In order to fit the Naive Bayes models, we will need to derive the the priors and any parameters
the likelihood requires. We will be using the MLE estimates of these values, which we will derive
now. The Naive part of Naive Bayes is the assumption of independence of word combinations seen
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in messages, i.e.:

P (xi|ci = k) =
M∏
j=1

P (xij |ci = k)

where j indicates the column of xi, and M is the length of our vocabulary.
This assumption although naive makes Naive Bayes a powerful classifier, though it is not a good

assumption for modelling the data. This assumption leads to:

P (xi, ci) =

K∏
k=1

[
P (ci = k)P (xi|ci = k)

]

=
K∏
k=1

[
P (ci = k)

M∏
j=1

P (xij |ci = k)

]

=
K∏
k=1

P (ci = k)
K∏
k=1

M∏
j=1

P (xij |ci = k) (6)

Using indicator functions, which will be denoted by 1, and Eq. (6), we can derive the likelihood of
our data:

P (D) =
N∏
i=1

[
K∏
k=1

P (ci = k)1{ci=k}
K∏
k=1

(
M∏
j=1

P (xij |ci = k)

)
1{ci=k}]

We then take the log of the likelihood to construct the log likelihood as:

log(P (D)) =

N∑
i=1

[
K∑
k=1

log
(
P (ci = k)

)
1{ci = k}

K∑
k=1

(
M∑
j=1

1{ci = k} log
(
P (xij |ci = k)

))]

where N is the number of data points.
Two Naive Bayes classifiers will be fit to this data. The first of which will be a Bernoulli Naive

Bayes classifier and the second will be a Multinomial Naive Bayes Classifier. The difference between
both of these models is the assumed form of the data and the assumed form of the probability
distribution of data points. First, shall look at the Bernoulli model and derive the relevant MLE
estimates. The Bernoulli model assumes that xij ∈ {0, 1}, i.e. the data represents the jth word in
our vocab occurring at least once in message i and that:

P (xij |ci = k) ∝ (θjk)xij (1− θjk)1−xij (7)

where θjk is the probability of a success, in this case the jth word occurring at least once in a
message of class k.

We wish to derive the MLE estimates for a general class k and so will drop the summation over
k for the following steps: Subbing Eq. (7) into the log likelihood we get:

log(P (D|ci = k)) =
N∑
i=1

[
log
(
P (ci = k)

)
1{ci = k}

(
1{ci = k} log

(
(θjk)xij (1− θjk)1−xij

))]

=

N∑
i=1

[
log
(
P (ci = k)

)
1{ci = k}

(
1{ci = k}

(
xij log(θjk) + (1− xij) log(1− θjk)

))]
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It is clear we need MLE estimates for θjk and P (ci = k). For the estimation of P (ci = k), we

will need to use Lagrangian multipliers to solve subject to the constraint:
∑K

k=1 P (ci = k) = 1.
First, for θjk we will take the derivative of the log likelihood and set equal to 0:

∂ log(P (D|ci = k))

∂θjk
=

N∑
i=1

(
1{ci = k}

(xij
θjk
− 1− xij

1− θjk

))
= 0

=
N∑
i=1

(
1{ci = k}

(
xij − θjk

))
= 0

θ̂jk =

∑N
i=1 1{ci = k}xij∑N
i=1 1{ci = k}

=
Number of messages containing vocab j in Class k

Number of messages in Class k

(8)

Using Lagrangian multipliers for P (ci = k) with the constraint
∑K

k=1 P (ci = k) = 1, we get the
follow function:

Λ =

N∑
i=1

log
(
P (ci = k)

)
1{ci = k} − λ

(
K∑
k=1

P (ci = k)− 1

)

This leads to:

∂Λ

∂P (ci = k)
=

∑N
i=1 1{ci = k}
P (ci = k)

− λ = 0

P̂ (ci = k) =

∑N
i=1 1{ci = k}

λ

We solve for the Lagrangian multiplier using the constraint:

K∑
k=1

P̂ (ci = k) =

∑N
i=1 1{ci = k}

λ
= 1

λ =
N∑
i=1

1{ci = k} = N

Therefore, the MLE estimate of the prior is:

P̂ (ci = k) =

∑N
i=1 1{ci = k}

N
=

Number of messages in Class k

Total number of messages
(9)

And thus concludes the derivation of the MLE estimates for the Bernoulli model given by Eq.
(8), and Eq. (9). The Multinomial MLE estimates are calculated in a similar manner. However,
both require use of Lagrangian multipliers. The MLE estimate for the prior is the same as that of
the Bernoulli model. Therefore, we are only required to derive the new MLE estimate for θjk.

The Multinomial model assumes that xij ∈ {0, 1, . . . }, i.e. the data represents the number of
occurrences of the jth word in our vocab in message i and that:

P (xij |ci = k) ∝
M∏
j=1

(θjk)xij (10)
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where θjk is the probability of a success, in this case the jth word occurring xjk times in a message
of class k.

We wish to derive the MLE estimates for a general class k and so will drop the summation
over k for the following steps: Subbing Eq. (10) into the log likelihood, we construct a Lagrangian
function to solve subject to the constraint:

∑M
j=1 θjk = 1:

Λ =

N∑
i=1

1{ci = k}

(
M∑
j=1

xij log(θjk)

)
− λ

(
M∑
j=1

θjk − 1

)
This leads to:

∂Λ

∂θjk
=

N∑
i=1

1{ci = k}

(
xij
θjk

)
− λ = 0

θ̂jk =

∑N
i=1 1{ci = k}xij

λ

We solve for the Lagrangian multiplier using the constraint:

M∑
j=1

θ̂jk =

∑M
j=1

∑N
i=1 1{ci = k}xij

λ
= 1

λ =

M∑
j=1

N∑
i=1

1{ci = k}xij

Therefore, the MLE estimate for θjk is:

θ̂jk =

∑N
i=1 1{ci = k}xij∑M

j=1

∑N
i=1 1{ci = k}xij

=
Total occurrences of vocab j in messages of class k

Total number of words in messages of class k
(11)

And thus concludes the derivation of the MLE estimates for the Multinomial model given by Eq.
(11), and Eq. (9).

Fitting both of these models is a simple case of calculating both the priors and the thetas using
simple count and sum functions according to the relevant MLE estimates for each class, spam and
ham. As a final note, we shall discuss Laplacian smoothing as a method to overcome the sparsity
of the matrix X. Laplacian smoothing requires the addition of 1 to the numerator of the MLE
estimate of θjk and the addition of M to the denominator. This provides a base probability of
message of class k containing a word that has never occurred in a message of class k before. This
base probability is equal to 1

M .
To measure both models performance on unseen data, we split the given data set into training

and testing sets. 80% of the data, 4,458 messages are placed into a training set and the remaining
1,114 are placed into a test set. Both models are fit to the training set by using the data points
in the training set to calculate the MLE estimates. We then predict the classification of the data
points in the test set. As mentioned before, the class predicted for a data point is the class which
maximises the posterior of that data point. To avoid computational errors, we in fact calculate
the log posterior. Classification is carried out for both models on all points in the test sets and
a confusion matrix is constructed using the known true classes of the test data points. In this
example, we have taken ham as a positive response encoded to class 0, and spam as a negative
response, encoded to class 1. From the confusion matrix, we can calculate a range of metrics to
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compare the models. As it is more important to correctly classify ham messages, as incorrectly
classifying a ham message as spam could cause important messages to not be delivered, we will focus
on the sensitivity of the classifiers as our main point of comparison. The sensitivity is calculated as
the total number of correctly predicted ham messages divided by the total number of actual ham
messages.

The confusion matrix for the Bernoulli Naive Bayes classifier is as follows:

Predicted \Actual Ham Spam

Ham 957 14
Spam 11 132

Table 5: Confusion Matrix for Bernoulli NB

As can be seen in Table 5, the Bernoulli Naive Bayes correctly classified 957 Ham messages out
of a possible 968. This leads to a sensitivity of 0.9886. It incorrectly allowed 14 Spam messages
through. The confusion matrix for the Multinomial Naive Bayes classifier is as follows:

Predicted \Actual Ham Spam

Ham 956 7
Spam 12 139

Table 6: Confusion Matrix for Multinomial NB

As can be seen in Table 6, the Multinomial Naive Bayes correctly classified 956 Ham messages
out of a possible 968. This leads to a sensitivity of 0.9876. The Bernoulli model only correctly
classified 1 more Ham message than the Multinomial. But the Multinomial model stopped 7 more
spam messages. It can be argued that the single extra Ham message that the Bernoulli model
classified correctly is not worth the 7 Spam messages it missed. In this case, due the minute
difference in sensitivity, the overall accuracy of the classifiers as our metric. The accuracy of the
Bernoulli model was 0.9776 vs the Multinomial’s 0.9829. Therefore, we shall choose the Multinomial
Naive Bayes classifier as our model of choice.
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