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Problem Overview

Aim
Perform statistical inference on Hawkes processes which have been

observed in an aggregated form using deep learning.

Stochastic Point Processes are used to describe random phenomena
through time.

The Hawkes process (Hawkes, 1971) is a self-exciting stochastic
point process.
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The Hawkes Process
Notation
The realisations of a stochastic point process are denoted by {ti}i=1,...,n.
Alternatively, these can be represented by the corresponding count process;
{N(t)}t≥0.

Conditional Intensity of a Hawkes Process

λ∗(t) = µ+
∫ t

0
k(t − u) dN(u) (1)

where µ ≥ 0 and k : (0,∞) 7→ [0,∞).

Kernel Function
The form of the kernel function defines the self-exciting property. Hawkes
(1971) defined this as:

k(t − u) = α exp(−β(t − u)) (2)
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Aggregated Hawkes Process
The ability to precisely observe event times is reduced in certain
applications.

This censoring of precise event times leads to stochastic processes
being represented by the count of events over disjoint intervals of
time.

Precise Event Times
{1.32610, 1.65561, 1.68044, 1.69923, 1.75455, 2.07640, 2.88915, . . . }

Observed Event Times
{1.3, 1.7, 1.7, 1.7, 1.8, 2.1, 2.9, . . . }

Aggregated Data (discretised in steps of ∆ = 0.1){
N(∆)

j

}
j=1,..., T

∆

= {0, . . . , 1, 0, 0, 0, 3, 1, 0, 0, 1, . . . }
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The Hawkes Process

(a) Plot of Conditional Intensity Function

(b) Plot of Aggregated Hawkes Process (discretised in steps of ∆ = 0.5)

Figure 1: Hawkes process with parameter {α, β, µ} = {2, 2.5, 1}
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Data Simulation
Simulation of an Aggregated Hawkes process requires the specifica-
tion of:

Two of the following three:
- self-exciting rate, α
- intensity decay rate, β
- branching ratio, η

• baseline intensity, µ
• time horizon, T
• discretisation step-size, ∆

Branching Ratio

η =
∫ ∞

0
α exp(−β(s)) ds = α

β
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Data Simulation
Realisations of Hawkes processes were simulated using the ’hawkes’
package in R (Zaatour, 2014).

Simulated data was aggregated using a user defined function.

Processes were simulated with an approximately constant expected
activity.

Expected Activity

E(λ∗(t)) = µ

1− η
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Estimating η and µ

The estimation of {α, β, µ} was approached as a regression problem
using the aggregated Hawkes process as the independent variables.

Estimation of the branching ratio, η, and baseline intensity, µ, was
achieved using a Neural Network.

Six Hidden Layers
T Neurons

Activation Function = ReLU
L2 Regularisation = 0.001

Input{
N(∆)

j

}
j=1,..., T

∆

Output
{η̂, µ̂}

Figure 2: Neural Network Structure Used for Estimation
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Estimating α and β

Estimation of the self-exciting rate, α, was achieved using a normal
linear model.

This was achieved using the mean maximum event count as the
independent variable.

Link between α and maximum count
Inter-arrival times of a Hawkes process are distributed according to
an exponential distribution with intensity λ∗(t).

Due to the jump in conditional intensity, the expected waiting time,
1/λ∗(t), decreases after an event.

This decrease is proportional to the value of α.
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Estimating α and β

(a) Relation between maximum count
and α

(b) Relation between pre-processed
summary statistic and α

Figure 3

The estimated values of α and η were then used to calculate β̂ = α̂
η̂ .
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Supervised Learning Results

(a) Comparison of α estimation (b) Comparison of β estimation

(c) Comparison of µ estimation

Figure 4: Comparison of Parameter Estimation Methods

10



Supervised Learning Discussion

The MC-EM algorithm (Shlomovich et al., 2020) outperforms the
Supervised Learning method in accuracy.

This was an unsupervised test using supervised learning algorithms
so performance may be improved.

Supervised learning method has significantly lower computational
time in current implementations.

Supervised learning performance was robust across parameter ranges,
most importantly the level of discretisation which ranged from 0.25
to 6.
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Variational Auto-Encoders (VAEs)

Aim: To perform inference on θ = {η, µ} given an observation of
an Aggregated Hawkes process, x .

Variational Auto-Encoders combine deep learning and variational
inference to approximate p(z |x), where z is an unobserved latent
variable.

Variational Auto-Encoders provide a generative model which can al-
low for Bayesian inference on p(θ|x) using MCMC sampling (Mishra
et al., 2020).
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Variational Auto-Encoders (VAEs)

A VAE uses a neural network to ’encode’ data, x , into a continuous
lower dimensional latent variable, z .

The input is reconstructed or ’decoded’ from the latent variable
using a separate neural network

Figure 5: Basic Structure of a VAE with a MVN latent variable
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Variational Auto-Encoders (VAEs)

Evidence Lower Bound (ELBO)
The Evidence Lower Bound forms a lower bound for the log
marginal likelihood of the data, x .

log(pθ(x)) = DKL(qφ(z|x) || pθ(z|x)) + ELBO
log(pθ(x)) ≥ Eqφ(z|x)

[
log pθ(x |z)

]
− DKL(qφ(z|x) || pθ(z))︸ ︷︷ ︸

ELBO

The form of the likelihood p(x |z) is required to be specified for the
training of the VAE.
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Poisson VAE

Poisson Log Likelihood

log(p(x |z)) ∝
100∑
j=1

N(∆)
j log(λj )− log(N(∆)

j !)

Interpreting λ1,...,100

Through the link with the Poisson
Process:

N(∆)
j ∼ Poi

(∫ j∆

(j−1)∆
λ∗(s) ds

)

Input
x =

{
N(∆)

j
}

j=1,...,100

75 Neurons
Act. Funct. = ReLU

37 Neurons
Act. Funct. = ReLU

Output
z1,...,15 ∼ N (µ, Iσ2)

(a) Encoder

Input
z1,...,15 ∼ N (µ, Iσ2)

37 Neurons
Act. Funct. = ReLU

75 Neurons
Act. Funct. = ReLU

Output
λ1,...,100

(b) Decoder

Figure 6: Poisson VAE structure
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Poisson VAE Results

(a) Test 1: {α, β, µ} = {0.2, 1.0, 4}

(b) Test 2: {α, β, µ} = {0.6, 3.0, 4}
Figure 7: Reconstruction of Integrated Intensity using Poisson VAE
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Poisson VAE Results

(a) Test 3: {α, β, µ} = {0.7, 1.0, 1.5}

(b) Test 4: {α, β, µ} = {2.1, 3.0, 1.5}
Figure 8: Reconstruction of Integrated Intensity using Poisson VAE
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Bayesian Inference

Aim: Use MCMC sampling to generate a sample from p(z |x)

The unnormalised posterior is:

p(z |x) ∝ p(x |z)p(z)

∝
100∏
j=1

λj
N(∆)

j exp(−λj)
15∏

i=1
exp(−0.5(z2

i ))

where λj =
(
Decoder(z)

)
j
.

Therefore, a sample from p(z |x) can be drawn using the Poisson
Decoder.
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Dueling Decoder
The Dueling decoder framework was proposed in Seybold et al.
(2019).

Input
x =

{
N(∆)

j
}

j=1,...,100

75 Neurons
Act. Funct. = ReLU

37 Neurons
Act. Funct. = ReLU

Output
z1,...,15 ∼ N (µ, Iσ2)

(a) Encoder

Input
z1,...,15 ∼ N (µ, Iσ2)

15 Neurons
Act. Funct. = ReLU

15 Neurons
Act. Funct. = ReLU

Output
θ = {η, µ}

(b) Primary Decoder

Input
z1,...,15 ∼ N (µ, Iσ2)

37 Neurons
Act. Funct. = ReLU

75 Neurons
Act. Funct. = ReLU

Output
λ1,...,100

(c) Secondary Decoder

Figure 9: Dueling Decoder structure
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Dueling Decoder Results

(a) Reconstruction

(b) Density plot of Predictive posterior for θ

Figure 10: Performance of Dueling Decoders on Test 1: {α, β, µ} = {0.2, 1.0, 4}
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Dueling Decoder Results

(a) Reconstruction

(b) Density plot of Predictive posterior for θ

Figure 11: Performance of Dueling Decoders on Test 2: {α, β, µ} = {0.6, 3.0, 4}
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Dueling Decoder Results

(a) Reconstruction

(b) Density plot of Predictive posterior for θ

Figure 12: Performance of Dueling Decoders on Test 3: {α, β, µ} = {0.7, 1.0, 1.5}
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Dueling Decoder Results

(a) Reconstruction

(b) Density plot of Predictive posterior for θ

Figure 13: Performance of Dueling Decoders on Test 4: {α, β, µ} = {2.1, 3.0, 1.5}
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VAE Discussion

Inference on the distribution of θ|z was succesfully performed using
VAEs.

The Poisson VAE reconstructed the intensities well.

The reconstruction performance of the Dueling decoder was reduced,
but the density estimation performed well.

The reconstruction performance could be improved using an altern-
ative weighting of the loss function.

Further work on the training of these VAEs is necessary.
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Conclusion

Aim
Perform statistical inference on Hawkes processes which have been

observed in an aggregated form using deep learning.

Inference on {α, β, µ} was achieved using a blend of supervised
learning techniques.

Inference on the joint distribution of θ = {η, µ} was performed using
Variational Auto-Encoders.
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