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Abstract

Hawkes processes and their applications are a fast-growing area of study. A key diffi-
culty for their application to certain areas is imprecise observation leading to censored
event times. The resulting processes have been termed as aggregated Hawkes processes.
This thesis aims to address statistical inference and parameter estimation for aggregated
Hawkes processes. This is achieved using deep learning frameworks such as Variational
Auto-Encoders (VAEs) and Neural Networks. Two methodologies are developed in this
thesis; one regarding the successful encoding of the aggregated data using a Variational
Auto-Encoder and a Poisson likelihood, and the other uses a Multilayer Perceptron to
solve the problem of parameter estimation. The successful application of VAEs to aggreg-
ated Hawkes processes allowed for Bayesian inference to be performed on the branching
ratio, η and the baseline intensity, µ. The potential of this method is demonstrated using
four test processes with a range of underlying parameters. The problem of parameter
estimation was successfully approached using a blended supervised learning technique.
This method was tested comprehensively using a range of parameter values to establish
an understanding of its performance. It was concluded that the method developed in this
thesis provides similar performance to other solutions but with a significantly reduced
computational time.
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1. Introduction

The study of Hawkes processes has shown a wealth of potential applications in seismology
(Ogata, 1998), criminology (Mohler et al., 2011), and most recently finance (Bacry et al.,
2015). The application of Hawkes processes to finance has been a rapidly growing area of
study, with this growth expected to continue for many years (Hawkes, 2018). However,
since the conception of algorithmic trading, the time scales at which events occur in
financial markets have been reducing to near microsecond levels (Perez, 2011). As these
time scales have plummeted, the ability to precisely observe event times has diminished
due to technological constraints. These short time scales have become inhibitory to
the application of Hawkes processes, as it is a self-exciting stochastic point process.
This means that two events cannot be observed to have occurred at the same time. This
problem of imprecise observation is not limited to finance, and is seen in other areas such
as cyber-security (Turcotte et al., 2017), where the monetary cost of precise observation
outweighs the benefits it brings. Therefore, this has led to the requirement of parameter
estimation techniques for the resulting "aggregated" Hawkes processes. These consist of
the number of events over regular disjoint intervals, rather than the precise event times.
The work seen in Shlomovich et al. (2020) is a good example of a solution to this problem.
Of interest is to define the underlying features of a Hawkes process realisation such as
the expected number of events caused by the self-exciting property. Accurate parameter
estimation is a key component in understanding these features, and the censoring of
event times complicates parameter estimation.
The work in this thesis aims to use deep learning to address the problem of parameter

estimation when event times have been censored. This shall first be approached using
Variational Auto-Encoders, as the statistical inference framework they provide may allow
for the distributions of the conditional intensity function parameters to be understood.
Variational Auto-Encoders shall also be applied for process reconstruction with the aim
of using frameworks such as π-VAE (Mishra et al., 2020) to interpolate censored event
times. The problem shall also be approached as a regression problem using supervised
learning techniques such as neural networks.
The background knowledge on Hawkes processes and Variational Auto-Encoders ne-

cessary for subsequent chapters shall be provided in the next chapter. This shall be
followed by a comprehensive literature review of the Hawkes process parameter estima-
tion problem when the events times are censored as well as when they are not. Then,
the novel methodologies derived in this paper which apply deep learning to this problem
shall be presented. This thesis is then concluded with the results of these methodologies
and the subsequent discussion regarding their performance.
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2. Background

The aim of this chapter is to establish the prerequisite knowledge regarding Hawkes
processes, neural networks, and Variational Auto-Encoders (VAEs). First, the necessary
properties and definitions relating to the Hawkes process are established. This is followed
by the necessary definitions and properties of VAEs and neural networks. This knowledge
is required to comprehend the methodologies presented in Section 4.

2.1. Hawkes Processes
The Hawkes process is a self-exciting point process which was defined in Hawkes (1971).
Before defining the Hawkes process, some elementary knowledge of stochastic processes
is required and some motivation for the self-exciting property is presented.

2.1.1. Stochastic Point Processes
The Hawkes process is a point process which is a form of stochastic process. Temporal
point processes are often used to describe the times at which random events occur, with
ti indicating the time at which the ith random event occurred. For example, define a
vehicle passing a point on a road as a random event. The sequence of times at which
a vehicle passes this point, form a realisation of a temporal point process. The random
events are sometimes referred to as arrivals and the time at which they occurred are
referred to as arrival times. A formal definition of a general point process can be seen in
Chapter 2 of Last and Penrose (2017), however it is sufficient for this thesis to understand
the form of a temporal point process realisation.
Let T1, T2, . . . be random variables occurring according to a point process. Let

t1, t2, . . . denote realisations from that point process. Realisations of a point process
are commonly represented in three ways:

1. A series of event times; {ti}i=1,...,n

2. A series of waiting times; {τi}i=1,...,n where τi = ti − ti−1 and t0 = 0

3. A series of event counts over the interval (0, t]; {N(t)}t≥0

Note that given the event times, the waiting times can be calculated and vice versa.
The third form presented is referred to as a counting process and the formal definition
is presented here:

Definition 2.1.1 (Counting Process). A counting process is a stochastic point process,
{N(t)}t≥0, which has the following properties:
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1. N(t) ≥ 0 (non negative)

2. N(t) ∈ Z (integer valued)

3. N(t) ≤ N(s) ∀ t ≤ s (non-decreasing)

It should also be noted that for t < s, the number of random events occurring over the
interval (t, s], is equal to N(s)−N(t). Therefore, a counting process can be represented
by a chosen number of increments. An increment is the value of the counting process
over disjoint subsets of the interval.
For example, let {N(t)}t≥0 denote a counting process on the interval (0, T ], with an

underlying point process. This process can be represented by the desired number of
increments, n, using an increment length of ∆ = T/n. The increments can be defined
as follows:

N
(∆)
i = N(∆i)−N(∆(i− 1)) i = 1, . . . , n

Point processes are often observed as increments of a counting process when the ob-
servation of event times is impeded. This observation may be impeded by limits of
technology or costs of observation and therefore is common when events occur on very
small time scales such as in finance or cyber-security (Turcotte et al., 2017). There is
an inherent loss of information in this case. One of the focuses of this thesis is to over-
come this loss of information. However, it should be noted that this loss of information
is directly linked to the size of increment length ∆. As ∆ ↓ 0, the counting process
increments will allow the underlying point process to be recovered.
The most widely known example of a counting process is a Poisson process. The

fundamental property of a Poisson process is that the number of events over an interval
of length t, follows a Poisson random variable with rate λt. This can be expressed as:

P(N(t) = n) = (λt)n

n! exp (−λt) (2.1)

Eq. (2.1) defines a homogeneous Poisson process due to its constant rate parameter
λ > 0. This rate parameter is also known as the intensity of the Poisson process. This
leads to the formal definition:

Definition 2.1.2 (Homogeneous Poisson Process). A counting process is a homogeneous
Poisson process if the following properties hold:

1. N(0) = 0

2. N(t) has independent increments

3. The number of events in an interval of length t follows a Poisson random variable
with intensity λt.
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Figure 2.1.: Plot of a homogeneous Poisson process

A homogeneous Poisson process is a limiting assumption in many cases. Building on
the earlier example where a random event was defined as a vehicle passing a point on
a road. This would be said to follow a homogeneous Poisson process if the number of
vehicles which pass that point over the course of a minute/hour/day, is a Poisson random
variable with constant intensity. The homogeneity property means the expected number
of vehicles which shall pass the point at rush hour between 08:00 and 09:00 and during
the night between 23:00 and 00:00, will be equal. This would be a reasonable assumption
if the road was not regularly used. However, this would be an unreasonable assumption
given a main road into a busy city.
This leads to the inhomogeneous Poisson process which has a variable intensity

defined by a function of time λ(t). For an inhomogeneous Poisson process, the number
of events over an interval (0, t], follows a Poisson random variable with rate equal to the
integral of the intensity function over the interval:

∫ t
0 λ(s) ds. Therefore, the constant

intensity λt in Eq. (2.1), is replaced by this integral to give:

P(N(t) = n) = (
∫ t
0 λ(s) ds)n

n! exp
(
−
∫ t

0
λ(s) ds

)
(2.2)

The formal definition is as follows:

Definition 2.1.3 (Inhomogeneous Poisson Process). A counting process is an inhomo-
geneous Poisson process with intensity λ(t) if the following properties hold:

1. λ(t) is an integrable function

2. N(0) = 0

3. N(t) has independent increments
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4. for any t ∈ [0,∞)

P(N(t+ ∆)−N(t) = 0) = 1− λ(t)∆ + o(∆)
P(N(t+ ∆)−N(t) = 1) = λ(t)∆ + o(∆)
P(N(t+ ∆)−N(t) ≥ 2) = o(∆)

Remark 2.1.4. The notation seen above, o(·), is commonly referred to as ’little o’
notation. It can be defined as follows:

f(n) = o(g(n)) ⇐⇒ lim
n→∞

f(n)
g(n) = 0

2.1.2. The Hawkes Process
The Hawkes process is known as a self-exciting point process. This means the Hawkes
process falls into a category of point processes which are defined by their conditional
intensity. The conditional intensity can intuitively be known as the expected arrivals
conditional on a process’ history, Ht. Formally, Ht is a filtration, however intuitively it is
the representation of arrivals up to, but not including, time t. The conditional intensity
can be defined on a combination of the conditional density f(t|Ht) and conditional
distribution F (t|Ht) or directly on the conditional expectation. This leads to the formal
definition of conditional intensity:

Definition 2.1.5 (Conditional Intensity function). Consider a count process, N(t), with
history, Ht. Given the conditional density, f(t|Ht), and the conditional distribution,
F (t|Ht), the conditional intensity function of the underlying point process can be defined
as:

λ∗(t) = f(t|Ht)
1− F (t|Ht)

Alternatively, the conditional intensity can also be defined as:

λ∗(t) = lim
∆→0

E[N(t+ ∆)−N(t)|Ht]
∆

Here, λ∗(t) is a non-negative function which defines the intensity of the point process
based on the history of points seen up to but not including the present. Point processes
which are defined on their conditional intensity can fall into two categories; self-exciting
or self-correcting. The former relates to a process which has an increase in intensity given
an arrival and the latter relates to a process which has a decrease in intensity given an
arrival. As mentioned previously, the Hawkes processes is a self-exciting process. This
leads us to the definition of the Hawkes process:

Definition 2.1.6 (Hawkes Process). Consider a counting process, N(t), with associated
history, Ht, and conditional intensity function, λ∗(t). Suppose that for any t ∈ [0,∞)
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the following holds:

P(N(t+ ∆)−N(t) = 0) = 1− λ∗(t)∆ + o(∆)
P(N(t+ ∆)−N(t) = 1) = λ∗(t)∆ + o(∆)
P(N(t+ ∆)−N(t) ≥ 2) = o(∆)

If the conditional intensity function, λ∗(t), is of the form:

λ∗(t) = µ+
∫ t

0
k(t− u) dN(u) (2.3)

where µ ≥ 0 and k : (0,∞) 7→ [0,∞), then N(t) is said to be a Hawkes process

From the above definition of the Hawkes process, it can be seen that the form of
the conditional intensity function is its defining feature. The conditional intensity of
a Hawkes process can be split into two terms. The first term, µ, is known as the
background intensity, and the second term, k(·), is known as the excitation function. In
recent literature, this excitation function often takes the form of a shift invariant kernel
and this form is assumed in Eq. (2.3), however this is not a requirement.
Comparing the definition of the Hawkes process to that of the inhomogeneous Poisson

process, a link between the two can be seen. In particular, the incremental counts of a
Hawkes process on the interval (s, t] follows a Poisson random variable with intensity as
given in Eq. (2.4). ∫ t

s

[
µ+

∫ v

0
k(v − u) dN(u)

]
dv (2.4)

This leads to the conditional intensity function being considered in two parts, the
homogeneous baseline intensity and the inhomogeneous intensity from self-excitation.
Setting the excitation function to 0, leads to λ∗(t) = µ. This represents a constant
conditional intensity function which is equivalent to a homogeneous Poisson process.
This allows for a Hawkes process to be viewed as an immigrant-birth process. In this
framework, the points in a Hawkes process can be classified as either an immigrant or
a descendant. Immigrants are events which are attributed to the background intensity.
Descendants occur due to the self-exciting property, these are considered "births". For
example in the case of seismology, the initial earthquake would be considered an immig-
rant into the point process, however any aftershocks are considered descendants of the
initial earthquake. The form of the kernel function strictly defines the properties of the
Hawkes process; the base form proposed in Hawkes (1971) is as follows:

k(t− u) = α exp(−β(t− u)) (2.5)

Other forms of kernel functions are regularly used but this is application dependent and
unless specified otherwise, the kernel function shall be assumed to be of the form seen
in Eq. (2.5). A realisation of a Hawkes process is seen in Figure 2.2.
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Figure 2.2.: Plot of a Hawkes process with parameter {α, β, µ} = {2, 2.5, 1}

Understanding the self-exciting properties which are implied by the kernel function
choice is an important area of study. Of particular interest in later sections in the
branching ratio, η. This branching ratio is defined as the expected number of first
generation descendants caused by an event. This is equal to the integral of the kernel
function over the interval [0,∞) which is as follows:

η =
∫ ∞

0
α exp(−β(s)) ds = α

β

As discussed in Laub et al. (2015), the branching ratio is very important for the
simulation of Hawkes processes. It is required for simulation of Hawkes processes that
η < 1. The reason for which can be seen by considering the total expected number of
descendants for an event. As shown in Laub et al. (2015), this is η

1−η in the case where
η < 1 and ∞ when η ≥ 1. Henceforth, η will be assumed to be less than 1.

In conjunction with defining the number of expected descendants, the total number
of expected events is given in Laub et al. (2015) as

E(λ∗(t)) = µ

1− η (2.6)

This relationship will be heavily relied upon in the data generation process seen in later
sections.

2.2. Variational Auto-Encoders
Auto-encoder Variational Bayes (AEBV) was first proposed in Kingma and Welling
(2013) as a variational Bayesian approach for inference when certain distributions are
intractable. Variational Auto-Encoders (VAE) are a special case of the AEBV, where
deep learning is combined with the proposed inference framework. This method grew
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in popularity with applications in image compression, image de-noising, and Natural
Language Processing. In particular, a generative model which is provided by VAEs is
of interest as it allows for variations of observed data to be generated. In the case
of de-noising images, the variations of an image generated aim to contain less noise
that the original observed image. This is achieved by compressing the input into a
lower dimensional space. When the image is being compressed to a lower dimension,
some information is inherently lost. As the noise in the image does not contribute
to the reconstruction performance, it is among the first information to be lost during
compression. This complex task is accomplished using deep learning and some pre-
requisite knowledge on neural networks is required. The required background for neural
networks is presented next, followed by an explanation of the mathematics of VAEs.

2.2.1. Neural Networks
Neural networks have become synonymous with deep learning in recent years and its vari-
ations such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks
(RNN) are regularly used for complicated problems such as computer vision. However
unless otherwise stated the term neural network in this thesis refers to its simplest se-
quential form known as a multilayer perceptron.

Multilayer Perceptrons

Multi-Layer Perceptrons (MLP) are a sequential feed forward network. An MLP is
designed to loosely replicated a brain’s neural structure. This is achieved by constructing
layers of "neurons". There are three types of layers in an MLP. The first is an input layer
and is used to enter data into the network. The second type of layer is known as a hidden
layer. As the name indicates the input into these layers is usually unseen. Data is passed
from the input layer to a user specified number of hidden layers, each with a user specified
number of neurons. Every neuron in a given layer is connected to every neuron in the
previous layer. The input is passed through the hidden layers to the output layer which
has the same number of neurons as the desired dimension of the output.

8



Figure 2.3.: Generic form of a Multilayer Perceptron (Adapted from (Bre et al., 2018))

As can be seen in the Figure 2.3, each neuron in a layer, l, is connected to each neuron
in the previous layer, l − 1. This is achieved using a linear combination of the values
of the neurons connected to it. The coefficients of these linear combinations are unique
to each neuron and are known as weights. The intercept coefficient is known as the
bias. After the linear combination of each layer has been evaluated, a transformation is
applied. This transformation is known as an activation function. The activation function
can range from the identity function to non-linear functions which restrict the range of
values the output can take. This allows an MLP replicate more complex functions.
Neural networks use the minimization of a loss function to make iterative changes to the
weights and biases within the network. This allows the network to learn the function
it is trying to replicate. This process is known as back propagation and is a gradient
based optimisation algorithm. The gradient of each layer is calculated recursively using
the chain rule which allows the gradient be calculated back through the network.

2.2.2. General Structure
Variational Auto-Encoders have become incredibly popular due to the diverse applica-
tions in many fields, particularly the field of computer science where it is used to both
de-noise and compress images. Auto-Encoders, which preceded VAEs, are a variation of
an MLP which passes an input of dimension, d, through multiple hidden layers until a
"neuron bottleneck" is reached, i.e. a hidden layer with d′ neurons and d′ � d. From
there, the network reconstructs the output to its original dimensionality. The output
to the neuron bottleneck is considered a lower dimensional representation of the input.
The neural network is usually symmetric around the neuron bottleneck. Therefore, the
neural network ’encodes’ the data into a lower dimensional representation and then ’de-
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codes’ the lower dimensional representation back to the original input. This leads to the
terminology of encoder and decoder, which represent the portion of the network before
and after the neuron bottleneck respectively.
The form of a VAE is very similar, with an encoder and a decoder portion, however a

VAE does not encode the lower dimensional representation to a single neuron bottleneck.
Instead, a random sampling layer is included, this allows the VAE to encode the input
into a continuous lower dimensional latent variable, z. This lower dimensional latent
variable is usually taken to be a Multivariate Normal (MVN). The continuity of this
latent variable is crucial to many uses of VAEs as the decoder forms part of the generative
model. This generative model allows for sampling from the joint distribution of the data
and the latent variable, p(x, z).

Figure 2.4.: Basic Structure of a VAE with a MVN latent variable z

Encoder

The encoder consists of a feed forward neural network which reduces the dimensionality
of the input down to the dimensionality of the chosen latent space Z. Due to the
form of the cost function used for training the neural network, the encoder becomes an
approximation of the intractable or unknown posterior, pθ(z|x). With a chosen structure
for the encoder neural network, and hyper-parameters φ, the encoder represents:

qφ(z|x) ≈ pθ(z|x)

A MVN latent variable, z, leads to z|x ∼ N (µ,σ). Unless otherwise stated, the latent
variable will be assumed to be MVN and σ will be a diagonal matrix meaning that the
latent dimensions are assumed to be independent. A fully trained encoder will output
the mean and log standard deviation of the latent variable given a certain input, x. This
can be expressed as follows:

Encoder(x)→ (µ, log(σ))
qφ(z|x) := N (µ,σ)

Decoder

Like the encoder, the decoder is a feed forward neural network. However, while the
encoder allows an input, x, to be encoded into the latent space, the decoder takes an
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observation from the latent space and reconstructs the input. Therefore, the structure
of the decoder is usually the reverse of the encoder i.e. if the encoder has an input layer,
two hidden layers and an output layer, with 100, 32, 16, and 2 neurons respectively, then
the decoder will also have an input layer, two hidden layers and an output layer, but
with 2, 16, 32, and 100 neurons respectively.
The advantage of a VAE versus other methods is the ability to construct a generative

model. In particular, the decoder represents pθ(x|z). Using the prior for z, the joint
distribution can be constructed using the following factorisation:

pθ(x, z) = pθ(z)pθ(x|z)

As mentioned previously, the latent space is typically assumed to be MVN, in this case
the prior for the latent variable z is assumed to be N (0, I). Therefore, reconstructed
inputs can be sampled by first drawing z ∼ N (0, I) and passing the sampled values
through the decoder to give a sample from the joint distribution.

2.2.3. Usage
Consider a dataset X = {xi}Ni=1 , where xi is an i.i.d sample of some continuous or dis-
crete variable x. The process is assumed to be generated by a random process involving
an unobserved continuous random variable z. The aim of AEVB is to provide a method
to find the optimal parameters θ when the marginal log likelihood pθ(x), or posterior
pθ(z|x), is intractable or computationally expensive to compute. The intractability rules
out frequential methods such as maximum likelihood estimation, and expensive compu-
tation which may be caused by large datasets, means sampling based solutions such as
MC-EM would be too expensive. The key to the ability of AEVB and VAEs is avoiding
these intractabilities or expensive computation through the form of the loss function.

2.2.4. Loss Function
As outlined in Section 2.2.3, VAEs are used when the log marginal likelihood is intract-
able or computationally expensive. The loss function used for VAEs, which is known
as the Evidence Lower Bound (ELBO), forms a lower bound for log pθ(x) (Kingma and
Welling, 2013). As such it allows for the maximisation of the log marginal likelihood
without the need for tractability.
The ELBO has the following forms (Kingma and Welling, 2019):

= Eqφ(z|x)
[

log pθ(x|z)
]
−DKL(qφ(z|x) || pθ(z|x)) (2.7)

= Eqφ(z|x)
[

log pθ(x|z)
]
−DKL(qφ(z|x) || pθ(z)) (2.8)

The ELBO seen in Eq. (2.7) is comprised of two parts, the first is the expectation of
the reconstructed inputs under the likelihood pθ(x|z). This term is equivalent to the log
marginal likelihood and is maximised as a measure of the accuracy of the reconstruc-
tion of the inputs. The second term denoted DKL is known as the Kullback-Leibler
(K-L) divergence and is a measure of how similar two distributions are. A key result of
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a VAE is the generative model which is achieved through a continuous distribution of
the latent variable in the latent space. The K-L divergence term ensures the continuity
of the latent space. It also acts as a measure of divergence between the approximate
posterior represented by the encoder, qφ(z|x), and the posterior of interest, pθ(z|x). The
K-L divergence term is non negative and is equal to zero if and only if the two dis-
tributions are the same. Therefore, the tightness of the bound to log pθ(x) is dictated
by the K-L divergence term. The maximisation of log pθ(x) ensures a good generative
model (Kingma and Welling, 2019) and therefore the ELBO forms a two for one. By
minimising the K-L divergence term, the approximate posterior becomes a better ap-
proximation for the true posterior, and also ensures the tightness of the bound on the
log marginal likelihood. As a final note, as can be seen in Kingma and Welling (2013),
DKL(qφ(z|x) || pθ(z|x)) = DKL(qφ(z|x) || pθ(z)) which leads to the form of the ELBO in
Eq. (2.8). This second form is the most commonly used and it is important to note that
it is equivalent to that of Eq. (2.7).

Optimisation of Loss Function

For a dataset with i.i.d data, D, the ELBO of this dataset is calculated using the sum
of its value of each individual data point:

Lθ,φ(D) =
∑
xi∈D

Lθ,φ(xi)

However, the gradient of this function is generally intractable and as neural networks
are optimised using back propagation, it should be noted that this back propagation
cannot occur through a random sampling layer. These problems are solved using the
reparameterisation trick (Kingma and Welling, 2013). Rather than sampling the latent
variable directly, z ∼ qφ(z|x), it is reparameterised to a differentiable function with a
noise variable. In the case of a MVN latent variable, the following reparameterisation is
used:

z|x ∼ N (µz|x,σz|x)
z = gφ(ε, x)

= µ(x) + σ(x) ε, ε ∼ N (0, I)

This reparameterisation technique, which was derived in Kingma and Welling (2013),
allows for the expression of z as a deterministic function of x which allows for a differ-
entiable Monte Carlo estimate for the first term of Eq. (2.8).

2.2.5. Key Points on VAE Training
As seen in Section 2.2.4, the optimisation problem of a VAE is the minimisation of the
negative of the ELBO seen in Eq. (2.8). This term is composed of the reconstruction
loss through the expectation of the likelihood and the restriction of the latent variable
through the K-L divergence term. The K-L divergence term ensures a continuous latent

12



variable in the latent space which is important for a good generative model. Considering
this, there are four items which must be specified for the training of a VAE which are
as follows:

1. The form of the likelihood, pθ(x|z).

2. The distribution of the latent variable, z, and its prior pθ(z). This includes the
specification of the number of latent dimensions.

3. The structure of the neural networks and associated hyper-parameters used as the
encoder and decoder.

4. The training scheme used.

Likelihood Specification

The most important decision is the form of the likelihood, as this defines the objective
of the reconstruction. The choice of likelihood should reflect the expected form of the
data, {xi}i=1,...,n. In Kingma and Welling (2013), a Gaussian likelihood is suggested
for continuous data and a Bernoulli likelihood is suggested for binary data. This choice
is highly dependent on the objectives of the application and many well known distri-
butions have been used in VAEs. For example, the multinomial VAE derived in Liang
et al. (2018) which assumes a multinomial likelihood and is commonly used for text
classification. It is worth noting that in methodology outlined in Kingma and Welling
(2013), the output of the decoder is not a direct reconstruction of the input but is the
appropriate parameters of the likelihood distribution.

Latent variable

For most applications of VAEs, the latent variable is taken to be MVN with a prior
specification of a standard normal. As can be seen in Kingma and Welling (2013), this is
not a requirement and details on non-normal latent variables can be seen in Kingma and
Welling (2019). The assumption of a standard normal prior, i.e. z ∼ N (0,σI), incor-
porates the assumption of independent latent dimensions due to the diagonal covariance
matrix. The remaining choice regarding the latent variable is the number of dimensions.
The number of dimensions of the latent variable is an important hyper-parameter to
be considered. The dimensionality directly impacts the quality of the reconstruction,
with higher dimensions allowing for a more expressive latent variable. It is worth noting
that the latent representation is viewed as a dimensionality reduction of the key com-
ponents of the input. This leads to a a higher dimensional latent variable allowing for
more information to be encoded into this representation. However, as indicated in the
β-VAE framework derived in Higgins et al. (2016), using less dimensions by increasing
the weight of the K-L divergence term increases the VAEs ability to learn meaningful
latent variables. Therefore the decision regarding latent dimensions is best made in
conjunction with the training scheme used and updated according to initial results.
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Structure & Training scheme

The structure of the neural networks used for both the encoder and decoder requires
a few considerations. The first consideration is the number of layers and neurons. In
particular, the total number of neurons is restricted to prevent over-fitting. The choice
for these hyper-parameters for the applications seen in this thesis shall be discussed in
later sections.
While it is standard to mirror the structure of the encoder onto the decoder it is not a

requirement. It should be noted that the encoder and decoder are not restricted to MLPs
with both recurrent and convolutional networks being regularly used and the resulting
VAEs are referred to as auto-regressive VAEs. With the nature of Hawkes processes
being self-exciting, which could be considered an auto-regressive property, then an auto-
regressive VAE may have perform well. However, due to the time constraints imposed
on this thesis and the additional problems with training auto-regressive VAEs (Bowman
et al., 2015), they are not considered.
When initialising the training of a VAE it is common for the K-L divergence term to

offer the largest reduction in the cost function. This leads to a standard VAE implement-
ation restricting the latent space to the prior specification before encoding meaningful
representations. This can be addressed through annealing the K-L divergence term in
the loss function. This annealing process refers to increasing the weight of the K-L di-
vergence term from 0 to 1 across epochs. For example, a monotonic annealing scheme is
suggest in Bowman et al. (2015) to reduce the initial focus on the continuity of the lat-
ent space and ensure that a meaningful representation of the data is learned. Typically
this scheme increases the KL divergence term in a linear or logarithmic fashion. Since
the initial developments in Bowman et al. (2015), the development of cyclical anneal-
ing was outlined in Fu et al. (2019). In this scheme, the weight of the K-L divergence
term is cycled through repeated monotonic schedules. This can be viewed as allowing
the algorithm to attempt many "warm starts" in an effort to ensure a continuous latent
space with meaningful embeddings. Annealing can be combined with the theory behind
β-VAE developed in Higgins et al. (2016), which sees a large weight being placed on
the K-L divergence term to ensure the minimal number of latent dimensions are used.
This means more useful information is encoded into the latent dimensions. This can
be likened to regularisation such as ridge or lasso regression which ensures a minimal
number of features are used in a regression problem. When choosing a training scheme,
the number of epochs required will depend on the complexity of the problem, as well as
the annealing scheme implemented.
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3. Literature Review

As covered in Section 2.1, a Hawkes process is defined by the form of its conditional in-
tensity function. Therefore, accurate estimation of the parameters of this function are of
interest as it allows for an understanding of the event frequency. In particular, it allows
for an understanding of the effect of endogenous (births) and exogenous (immigrants)
influences and events. Parameter estimation is a difficult task when the event times
of a process are available. It is even more difficult when the precise event times are
not available. Information is lost in this case due to intermittent observation (discret-
isation) or imprecise observation (rounding). Note that data generated by intermittent
and imprecise observation should be approximately equivalent assuming the underlying
mechanisms are random. This review first covers methods when precise observation or
recording is available (continuous data) and then methods when observation or recording
is imprecise (discrete data). The continuous data will be in the form of precise event
times and the discrete data will be in the form of an incremental count process at regular
observation intervals.

3.1. Parameter Estimation for Continuous Data
In general, the focus of this thesis shall be on parametric methods and in particular on
parameter estimation for Hawkes processes with the exponential kernel given in Eq. (2.5).
A range of methods are available for continuous data, with many modern methods being
based on non-parametric estimation of the intensity function. These non-parametric
methods are incredibly flexible as they allow for estimation of the conditional intensity
function without any restrictions on the form the function may take.

3.1.1. Parametric Estimation
Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation has been the standard for parameter estimation for
Hawkes processes with a range of parametric kernels (Bacry et al., 2012). It was first
outlined in Ozaki (1979). The log likelihood was given in terms of a general kernel
function in Rubin (1972), the derivation of which can be seen in Laub et al. (2015). The
general log likelihood is defined as follows:

Definition 3.1.1 (Log likelihood of the Hawkes’ model). Given a Hawkes process with
observation times, {ti}i=1,...,n for an interval [0, T ] the log likelihood of a Hawkes process

15



with conditional intensity function, λ∗(t), is given as:

`(t1, . . . , tn) = −
∫ T

0
λ∗(s) ds+

∫ T

0
log λ∗(s) dN(s)

Using the above definition, the gradients and the hessian matrix of the log likeli-
hood were derived in Ozaki (1979). Then, non-linear optimisation was performed using
Newton-Raphson. Note: when applying this method any modern method for non-linear
optimisation would be valid. This generalised version of MLE is quadratic in computa-
tional time. A recursive method for the exponential kernel, which is linear in computa-
tional time, was derived in Ozaki (1979) and presented in detail in Laub et al. (2015).
A recursive method is only available for the exponential kernel, meaning this speed up
is not present for other kernel choices. As the focus of the subsequent chapters is the
exponential kernel, the recursive form of the log-likelihood is given in Eq. (3.1).

`(t1, . . . , tn) =
n∑
i=1

log(µ+ αA(i))− µtn + α

β

n∑
i=1

[
exp(−β(tn − ti))− 1

]
(3.1)

where A(i) = exp(−β(ti − ti−1))(1 +A(i− 1))

Parametric Expectation Maximisation

A parametric Expectation Maximisation (EM) algorithm was seen for the exponential
kernel in Lewis and Mohler (2011) following a method derived in Veen and Schoenberg
(2008). This method relied on an expectation step to calculate the probability an event
i is a descendent of event j or is an immigrant. This is followed by a maximisation
step updating the current estimates for the conditional intensity function. An altern-
ative parametric EM algorithm is outlined in Olson and Carley (2013). No comparison
between the performance of these methods or their performance against the maximum
likelihood estimator is available. However it should be noted that the maximum likeli-
hood estimation appears to be favoured for parametric estimation problems.

3.1.2. Non-parametric Estimation
Non-parametric estimation for Hawkes processes encapsulates methods which do not
assume a form of the kernel function in the conditional intensity function. As seen
in the previous section, the parametric methods assumed the form of kernel to be as
in Eq. (2.5). The lack of assumption means that non-parametric methods are more
flexible, however this usually comes at a cost of accuracy. Therefore, should the form of
the kernel be known, it is usually best to use a parametric method.

Non-parametric Expectation Maximisation

An early non-parametric method in the form of an EM algorithm known as Model Inde-
pendent Stochastic Declustering (MISD) had been previously proposed in Marsan and
Lengline (2008). This method was derived for homogeneous background intensities and
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non-parametric kernels. This method is similar in methodology to Veen and Schoen-
berg (2008), as the expectation step includes estimating the probability an event i is
a descendent of event j or is an immigrant. The maximisation step then requires the
estimation of the constant background intensity and a piece-wise constant estimate of
the non-parametric kernel function is calculated. This is repeated until convergence.

Another non-parametric EM algorithm was developed in Lewis and Mohler (2011).
This EM algorithm utilises a penalised likelihood method and was designed to estimate
a Hawkes process with a varying baseline intensity in conjunction to the non-parametric
kernel function. This method added a penalty term to both the function being optimised
for the varying background intensity and the non parametric kernel. These penalty terms
allow for the minimisation problem to be re-framed as an ordinary differential equation
which is discretised and solved iteratively. The flexibility of this approach makes it
attractive when no information about the form of either the baseline intensity or the
kernel function is available.

Non-parametric estimation using first and second order statistics

A non-parametric method for Hawkes processes with symmetric kernel matrices was
first proposed by Bacry et al. (2012). Note: The kernel function is replaced with a
kernel matrix in the multi-variate setting. A subsequent method which did not rely
on the symmetry of the kernel matrix was proposed in Bacry and Muzy (2014b) and
extended in Bacry and Muzy (2014a) and Bacry and Muzy (2016). The first method
relied on linking the auto-covariance matrix at a given lag to the kernel matrix through
a Fourier transform. The requirement for the kernel matrix to be symmetric only affects
the multivariate case and not the univariate case discussed in this thesis. The method
proposed requires the choice of two hyper-parameters for the empirical estimation of the
covariance matrix. The hyper-parameters are the lag and scale of the covariance matrix,
where the lag relates to the lag of the auto-covariance and the scale, which can be viewed
as the discretisation of the kernel function. In the conclusion of Bacry et al. (2012), this
method is suggested to be reliable for series of greater than 105 events and to be used
as an initial exploration of kernel shape before proceeding to a classical parametric
method such as MLE. The extensions made in Bacry and Muzy (2014a) allowed for the
symmetric kernel requirement to be dropped. This method uses the matrix of conditional
expectation, which can be empirically estimated following results in Bacry et al. (2012),
and required the use of a Nystrom method on the resulting equations.

3.2. Parameter Estimation for Discrete Data
This section outlines methodologies which could be directly applied to the problem of
parameter estimation for aggregated Hawkes Processes.
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Non Parametric Estimation using Auto-Regressive Timeseries

In Kirchner (2016), the weak convergence of an Integer valued Auto-Regressive (INAR)
timeseries with infinite lags to a Hawkes process was shown. This initial work led to a non
parametric method which was presented in Kirchner (2017) which relies on discretising
the Hawkes process into small bins of size ∆. The infinite auto-regressive term was
approximated using p auto-regressive lags. The discretisation is usually performed on
the realisations of a Hawkes process but this results in a method which, with caveats,
can be used on discrete data. The approximation was made in three steps which are
outlined as follows:

E(N (∆)
i |H(∆)

i−1) ≈ ∆µ+ ∆
∫ (i−1)∆

0
k(i∆− u)N(du)

≈ ∆µ+ ∆
∫ (i−1)∆

(i−p−1)∆
k(i∆− u)N(du)

≈ ∆µ+
p∑

n=1
∆k(∆n)N∆

i−n

Where H(∆)
i−1 denotes the history of incremental counts up to the i−1 bin. With each ap-

proximation above, there is a corresponding source of error which was well documented
in Kirchner (2017). For this method, the largest source of error comes from the first ap-
proximation, where the kernel function is assumed to be piece-wise constant. As a result
of this distributional error, events which occur in the same bin cannot be conditional on
each other, i.e. an event in a bin cannot be said to have triggered another event in the
same bin.
To estimate the parameters of the INAR(p) process, conditional least squares was used

which results in the following estimation process for {N (∆)
i }i=1,...,n:

1. Choose large p, with p < n. This represents the number of bins in the piece wise
constant estimate of the kernel function

2. Calculate the conditional least squares estimators: θ = Y ZT (ZZT )−1 ∈ R(p+1)

3. The first p entries in the resulting vector represent the piecewise constant estimate
of the kernel, with the last entry representing the baseline intensity estimate

4. To complete estimation, a choice of smoothing should be applied to the kernel
function estimates

Where

Z =



N
(∆)
p N

(∆)
p+1 . . . N

(∆)
n−1

N
(∆)
p−1 N

(∆)
p . . . N

(∆)
n−2

...
... . . .

...
N

(∆)
1 N

(∆)
2 . . . N

(∆)
n−p

1 1 . . . 1


, Y =

(
N

(∆)
p+1 N

(∆)
p+2 . . . N

(∆)
n

)
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The effect of the value of p and ∆ are discussed in Kirchner (2017). This method suggests
for accurate estimation that the largest count in the discretised process is equal to 1. In
the continuous time setting this can be controlled through the value of ∆. This choice
is a trade-off between bias and variance with a smaller ∆ favouring bias. This could
be viewed as a bias/computational time trade off as the estimation process relies on a
matrix inversion. However, in the case of discrete data due to imprecise observation, this
choice is removed from the user. This means this method is suitable for this application,
however it is understood that estimates will have a large variance should the observations
be infrequent. It should also be noted that a semi-parametric method was suggested.
However, this was shown in Kirchner and Bercher (2018) to have reduced performance
even when the parametric model was equal to the true underlying intensity kernel. The
performance of this method was compared to MLE in Kirchner and Bercher (2018),
where it was shown that MLE outperformed this method. However, this was deemed
to be due to the non-parametric element of the method. The main advantage of this
method is the linear computational time compared to the naive MLE with is quadratic.

Binned Maximum Likelihood

This method was developed in Shlomovich et al. (2020) and can be considered the
naive application of maximum likelihood estimation given discrete data. The condi-
tional intensity function was treated as piecewise constant and is denoted henceforth as
λ(∆)(i) ≡ λ(∆)(i∆|H(∆)

i−1). This led to the following log likelihood approximation:

` =
n∑
i=1

N
(∆)
i log[∆λ(∆)(i)]−∆λ(∆)(i)

The assumption of a piecewise constant conditional intensity function was equivalent to
assuming N (∆)

i ∼ Poisson(∆λ(∆)). Therefore, this method has the same limitation as
the INAR(p) method as events within a bin cannot trigger events in the same bin. To
estimate the parameters, the log likelihood was maximised using constrained optimisa-
tion.

Monte Carlo - Expectation Maximisation

The main method derived in Shlomovich et al. (2020) was a Monte Carlo-Expectation
Maximisation (MC-EM) algorithm for Hawkes processes. An MC-EM algorithm is used
when the expectation of the posterior required during expectation step is analytically
intractable. This can be solved using Monte Carlo integration. However, Monte Carlo
integration requires a sample from the underlying posterior which is not available in this
case. The proposed method in Shlomovich et al. (2020) uses importance sampling to
draw a "legal" set of time points, {t̃j}j=1,...,k, given the observed process {N (∆)

i }i=1,...,n

and where k =
∑n
i=1N

(∆)
i . This novel method of generating samples was conducted

sequentially i.e. time points are drawn for each bin in order, and the time points sampled
up to a given bin influence the sample of time points within a given bin. This was
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achieved as follows: Given a sample up to event tj which occur in the first i − 1 bins
and suppose there are m events in the ith bin. The joint truncated PDF of the m events
given the history t1, . . . , tj is: ∏m

s=1 f(tj+s|Htj+s)
F (i∆|Htj+m−1)

∏m−1
s=1 F (tj+s|Htj+s)− F ((i− 1)∆|Htj )

∏m
s=2 F (tj+s|Htj+s)

(3.2)

Where f(·|·) denotes the conditional PDF and F (·|·) denotes the conditional CDF as
outlined in Shlomovich et al. (2020). By sequentially sampling each bin by maximising
Eq. (3.2), a sample which maximises the likelihood can be generated. These samples
are used to approximate the Expectation step using importance sampling and then
proceed to the Maximisation step as normal. This method was shown to outperform
the INAR method and the binned likelihood method on a small sample of processes
with an exponential kernel. In particular, an analysis relative to discretisation size was
conducted, showing that the MC-EM algorithm had the lowest bias for all step sizes
from 0.2 to 2.

3.3. Variational Auto-Encoders and Hawkes Processes
3.3.1. VAEs for Self Excited Discrete data
Zhao et al. (2020) outlined a VAE which used a negative binomial likelihood (NBVAE) to
model sparse and over-dispersed text data. This text data was in a form known as "bag
of words" meaning the data was a sequence of counts of occurrences of words in a given
document. Each word which occurred in the training data was assigned a location in a
vector. An observation was then represented by a vector which contains integer values,
with the integer in the ith position indicating the number of occurrences of the word in
the ith position. The data encoded by this VAE was of similar form to the incremental
count data produced by discretising a Hawkes process. The NBVAE claimed to encode
both self-exciting and cross exciting properties of words within a document. Self-exciting
in the context seen in Zhao et al. (2020) refers to the occurrence of a word resulting in
more occurrences of the same word. The cross exciting property refers to the excitation
of other related words given the occurrence of a word. The property which is referred
to as self-exciting in Zhao et al. (2020) corresponds to the self excitation of a Hawkes
process occurring within a the same bin and the cross-exciting property corresponds to
self excitation of a Hawkes process occurring in a subsequent bin. Therefore, NBVAE
has the potential to encode the self-exciting property of the Hawkes process.

3.3.2. Bayesian Inference in VAE Frameworks
A Bayesian inference framework was outlined in Mishra et al. (2020) which suggests,
given a new data-point, y, and a fully trained VAE on data D, a sample from the pos-
terior distribution, z|y, can be created using MCMC sampling. By sampling from this
posterior distribution, the decoder can subsequently be used to convert this sample to
a sample from the predictive posterior ỹ|y. It is possible that this method could be
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used to generate new samples of aggregated Hawkes processes if data quantity was a
problem. Alternatively, this Bayesian inference could be applied under a "Dueling" de-
coder framework as developed in Seybold et al. (2019). This framework relied on two
decoders with differing target outputs using the same latent variable. This allowed for
information to be encoded into the latent space which would not have been recovered by
a single decoder. This required separate specifications of reconstruction loss for the sep-
arate decoders. The methodology in Seybold et al. (2019) suggested that the secondary
decoder must have a distinct aim from the primary one as otherwise the methodology
was simply equivalent to re-weighting the reconstruction loss in a standard VAE. This
method may allow for improved Bayesian inference by using a secondary decoder which
aims to reconstruct the θ = {α, β, µ}. The Bayesian inference may be improved by a
secondary decoder by increasing the quality or quantity of information encoded into the
latent space, as well as allow for Bayesian inference around the predictive posterior of θ.
This will be outlined in the next chapter.
An alternative Bayesian inference methodology using a complex VAE structure was

proposed in Gabbard et al. (2019). The approach aimed to define the distribution of
parameters underlying gravitational wave time series, θ, using two encoders and a single
joint decoder. Due to the nature of the data (time series) the encoders and decoder were
convolutional neural networks. The Bayesian inference on θ is achieved using one encoder
which was conditional on θ and another encoder which was not. The conditional encoder
was used to shape the latent space and an altered K-L divergence term was used to map
the output of the non conditional encoder to the output of the conditional encoder.
The decoder was then fed the latent variable along with the original input. This is far
from the standard application of a VAE as the original input was fed to the decoder,
however the decoder was not recreating the input, but instead defining the moments of
the distributions of θ. As this method was developed for time series, it is possible that
this method could be adapted for application to Hawkes processes. This would allow
the distribution of θ = {α, β, µ} to be specified.

Super-Resolution

Another application of VAEs to aggregated Hawkes processes is one of super-resolution
or interpolation. A VAE framework such as π-VAE seen in Mishra et al. (2020), was
used to impute the temperature values of unobserved locations in Africa. The strong per-
formance of this VAE framework in this imputation task would suggest it has potential
application to aggregated Hawkes processes. This would be accomplished by sampling
possible event times at a more frequent level of observation than the original data. This
would allow the application of more traditional parameter estimation methods such as
maximum likelihood estimation.
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4. Methodology

The first section in this chapter outlines the form of the data which will be encountered,
as well as the data generation process used for both the training and testing data.
This data generation process formed an important step in the methodology outlined in
this chapter. Following this, Variational Auto-Encoders and the generative model they
provide, are applied to the problem of process reconstruction and parameter estimation.
Subsequently, parameter estimation is approached using supervised learning techniques.

4.1. Data
The data is in the form of an aggregated Hawkes process, x = {N (∆)

j }j=1,...,T/∆, with
horizon, T , and observation intervals of length ∆. As noted in Section 2.1.1, N (∆)

j =
N(∆j)−N(∆(j − 1)). This value represents the number of events which occurred over
the interval (∆(j − 1),∆j]. Data of this form is generated due to censoring of event
times of the underlying Hawkes process. This censoring occurs due to low frequency
observation of the count process, {N(t)}t>0, at regular intervals of length ∆, or due to
rounding of event times.

4.1.1. Data Generation
To generate data for training, a realisation of a Hawkes process is simulated and this
is then converted to the form of x = {N (∆)

j }j=1,...,T/∆. To generate a realisation of
a Hawkes process with the kernel outlined in Eq. (2.5), the self-exciting rate, α, the
intensity decay rate, β, the baseline intensity, µ, and the time horizon, T , must be
specified. Alternatively, it is equivalent to specify either α or β and the branching ratio,
η and then use η = α

β to solve for the unspecified hyper-parameter. It was decided
that specifying β and η would be used in this thesis as it allowed greater control of the
self-exciting properties. Therefore, generating the training data for the models which
are outlined later in this chapter, requires the generation of the hyper-parameter sets
{β, η, µ}.

The Hawkes process realisations used in this thesis were generated using the "hawkes"
package in R (Zaatour, 2014) which employs the methodology developed in Ogata (1981).
To convert a Hawkes process realisation to the form of x = {N (∆)

j }j=1,...,T/∆ required
the further specification of the discretisation step size, ∆. ∆ represented the length of
the observation interval. This data aggregation was achieved using a custom function in
R which counted the number of events which occurred over each interval.
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The expected activity of a Hawkes process, which shall be denoted with E, was presen-
ted in Eq. (2.6) and this was a dominating feature in early results. It was hypothesised
that expected activity could easily be estimated from observed data of interest and there-
fore the decision was made to remove it as a variable from any subsequent model. To
do so required the data generation process to generate processes with an approximately
equal level of expected activity. A method for generating the hyper-parameter sets of n
training processes is outlined below.
The following steps were taken to generate n training processes, {xi}i=1,...,n, with an

expected activity level of E:

1. Sample a random normal εi ∼ N (E, σ2) ∀ i = 1, . . . , n

2. Sample ηi ∼ U(a, b) where 0 < a < b < 1 are set according to prior beliefs

3. Calculate µi = εi
T (1− ηi)

4. Sample βi ∼ U(p, q) where 0 < p < q are set according to prior beliefs

5. Calculate αi = βiηi

6. Generate the ith training processes using an appropriate method and correspond-
ing parameter set: {αi, βi, µi}

7. Discretise the event times at intervals of length ∆ to form the respective incre-
mental count processes xi = {N (∆)

j }j=1,...,T/∆

Prior Specification

The prior specification for β and η was chosen to be the uniform distribution as this only
infers the minimum and maximum values to be generated. These values vary during the
thesis and are outlined in each section accordingly.
In a real world application of the methods seen in this thesis, the true values of β

and η would be unknown. Therefore, the prior specification for both parameters would
ideally contain the true values in their range. While this area requires further research,
a possible method for prior specification for β in a real world application could be
conducted in the following manner;
First, identify the shortest time-frame, tmin, at which it is believed that the proportion

of an events influence, i, will be diminished below some value near zero, δ. Using
exp(−βtmin) ≤ δ, solve for the value of β. This value of β would represent the maximum
value for the uniform distribution, q.
Similarly, identify the longest time-frame, tmax, at which it is believed that the pro-

portion of an events influence, i, will be diminished below some value near zero, δ. Using
exp(−βtmax) ≤ δ, solve for the value of β. This value of β would represent the minimum
value for the uniform distribution, p.

For example, consider the real event being earthquakes and their aftershocks. Let’s
define an event’s influence to be fully diminished once it has dropped below 0.01 of
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its initial influence. Let’s say it is believed that the influence of an earthquake on the
process intensity drops below 0.01 after at least 1 day or at most 7 days after the initial
event. Using the above method, and a time unit length of one day:

exp(−p(7)) = 0.01→ p = − log(0.01)/7 ≈ 0.65
exp(−q(1)) = 0.01→ q = − log(0.01)/1 ≈ 4.6

A more simple process would be conducted for the minimum and maximum values of
η. The use of domain knowledge to set limiting values of the number of expected first
generation descendants should be straight forward. As will be shown in later sections,
the range of η can be quite large, for example: [0.05, 0.8], without negatively affecting
performance.
It should also be noted that the prior specification of β and η is not inherently limited

to a uniform distribution, however the effect of other prior distributions requires further
study.

Test Data

As the test data used throughout this thesis was simulated, it was decided that the test
processes would be generated using the same methodology as the training processes. For
example, if the simulated test data was generated using the hyper-parameters outlined
in Table 4.1, then the training data would be generated using the same values.

Parameter Value
Intensity Decay Parameter (β) U(p = 1, q = 3)
Branching Ratio (η) U(a = 0.05, b = 0.8)
Expected Activity (E) 500
Time Horizon (T ) 100
Interval Length (∆) 1

Table 4.1.: Example Test Data Parameters

However, in real world applications of these methods, the underlying hyper-parameters
which generated the aggregated Hawkes processes which are of interest would be un-
known. Therefore, for a real world application of the methods seen in this thesis, there
are additional steps that should be conducted before generating the training data:
Given m aggregated Hawkes processes of interest, {yi}i=1,...,m, with time horizon T

and a discretisation step size of ∆, an estimate of the expected activity of these processes
must be calculated. Assuming the m processes are generated by the same parameters,
this would be done by calculating the mean of the total number of events seen for each
process yi:

ȳ = 1
m

m∑
i=1

T/∆∑
j=1

(
N

(∆)
j

)
i

Using E = ȳ, proceed using the steps 1-7 outlined above to generate the training data.
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Training Data Generation

The default number of training processes was 100,000. These were generated using the
method outlined in Section 4.1.1 with the following parameters:

Parameter Value
Intensity Decay Parameter (β) U(p = 1, q = 3)
Branching Ratio (η) U(a = 0.05, b = 0.8)
Expected Activity (E) 500
Time Horizon (T ) 100

Table 4.2.: Default Parameter Values

4.2. Bayesian Inference and Variational Auto-Encoders
As mentioned in Section 2.2.2, the main advantage of a VAE is that they provide a
generative model through the trained encoder and decoder. Therefore, with a properly
trained VAE, the possibility of deriving a joint distribution of θ = {η, µ}, was investig-
ated using the Bayesian inference frameworks outlined in Section 3.3.2. This application
would be useful in understanding the dynamics of a Hawkes process, for example in fin-
ancial markets it is desirable to understand the level of market endogeneity (Filimonov
and Sornette, 2012) & (Filimonov et al., 2014). This behaviour could be described by
the posterior distribution of θ = {η, µ}, as the value of η is equal to the expected num-
ber of first generation descendants. Before investigating the possibilities of the Bayesian
Inference on Hawkes Processes, the reconstruction performance of various VAEs were
tested on the data. Their ability to encode information into the latent space was invest-
igated and using these results, the optimal VAE structure was chosen for the Bayesian
inference methodologies.

4.2.1. Training
As with ordinary applications of MLPs, an excess of neurons allows the network to over-
fit to the data. This is because the network has enough capacity to memorise individual
results rather than learn generalised properties. As the training data is generated for
purpose, there was infinite training data available. This reduced the concern of over-
fitting due to the large training dataset. As a starting point, a two layer encoder and
decoder were used. Two hidden layers allowed for the encoder and decoder to replicate
more complicated functions and ensures the number of layers would not hinder the
learning of the VAE. The number of neurons in the hidden layers of the encoder was
dependent on the dimension of the input and dimension of the latent space. This ensured
a steady compression of the input to the lower dimensional latent space and steady
expansion of the latent variable to the reconstructed output. In some latter sections, the
decoder was not constructed to be the mirror of the encoder and the chosen structure
shall be explicitly stated for each decoder.
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Note: As a MVN latent variable is suitable for most applications of VAEs, there is
no reason to believe they shall not be suitable for applications to Hawkes processes.
Therefore, as mentioned previously, the latent variable shall be assumed to be MVN
henceforth. Only the dimension of the latent space shall be specified in the individual
methods.

Bernoulli VAE

The aim of this VAE was to reconstruct the input, xi = {N (∆)
j }j=1,...,T/∆. With a

sufficiently fine level of discretisation, N (∆)
j would be binary in form. This representation

has the lowest loss in information due to discretisation and therefore represents a test
of performance when the least information is lost. The aim of this VAE is to test if
reconstruction is possible when given maximum information. As mentioned previously
for binary data, a Bernoulli likelihood is suggested in Kingma and Welling (2013). Given
data {xi}i=1,...,n, the log likelihood is as follows:

log(p(xi|zi)) =
n∑
i=1

xi log(pi) + (1− xi) log(1− pi)

where pi = Decoder(zi) and zi = Encoder(xi), i.e. pi represents the output after point
xi is passed through the full VAE.
This represents the probability of a successful Bernoulli trial. An advantage to this

method is the form of a VAE for binary data is well researched due to its application
to image compression. This method was implemented with a simple training scheme of
5000 epochs with the following encoder and decoder structure:

Encoder Decoder

Layer 1 5000
act = ReLU

500
act = ReLU

Layer 2 500
act = ReLU

5000
act = ReLU

Table 4.3.: Structure of Encoder and Decoder for the Bernoulli VAE

Poisson VAE

The aim of this VAE was to reconstruct the input xi = {N (∆)
j }j=1,...,T/∆. Due to the

link between Hawkes processes and the Poisson process which is outlined in Section 2.1,
the likelihood of a Poisson distribution is a natural choice for the likelihood of N (∆)

j .
Given data {xi}i=1,...,n, this leads to a log likelihood of:

log(p(xi|zi)) =
n∑
i=1

xi log(λi)− log(xi!)

where λi = Decoder(zi).

26



λi can be interpreted as the expected activity over the period of bin i and as an
inhomogeneous Poisson process this value is equal to the integral of the (conditional)
intensity function over the interval ((i − 1)∆, i∆]. This interpretability is the main
advantage of a Poisson likelihood.
The discretisation level was taken as ∆ = 1, which resulted in an input dimension of

100. The dimension of the latent space was tuned by examining the performance of the
reconstruction and the latent space encoding. It was found that 15 latent dimensions
were sufficient as there was a diminishing reduction in reconstruction loss at dimensions
greater than 15. The structure used for the encoder and decoder can be seen in Table
4.4.

Encoder Decoder

Layer 1 75
act = ReLU

37
act = ReLU

Layer 2 37
act = ReLU

75
act = ReLU

Table 4.4.: Structure of Encoder and Decoder for the Poisson VAE

To ensure best performance, the VAE was trained for a total of 10,000 epochs. This
included a cyclical annealing scheme (Fu et al., 2019) to ensure the K-L divergence was
minimised after the reconstruction loss had been minimised. In particular, it was found
that if the K-L divergence term was not annealed, the VAE found a local minimum in
which the reconstructed output predicted the expected activity per time unit for all bins.
The annealing schedule used for the training can be seen in Figure 4.1. The annealing
weight was introduced after 2000 epochs after which it was increased over 500 epochs to
1/8. The weight was then held constant for 500 epochs before returning to 0. Over the
next 500 epochs, the weight was annealed to 2/8. This was repeated until the weight
reached 1, after which it was trained for a further 500 epochs. This allowed for the
weight to be introduced more slowly at first, which ensured the shape of the latent space
which minimised the reconstruction loss was not lost. The choice of activation function
was made as a result of exploding gradients. However, this was not sufficient in isolation
and so gradient clipping of values above 1000 was also implemented.
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Figure 4.1.: Plot of Annealing Schedule

Negative Binomial VAE

The aim of this VAE was to reconstruct the input xi = {N (∆)
j }j=1,...,T/∆. Despite the

interpretability of the Poisson likelihood, Zhao et al. (2020) demonstrated that a VAE
with a negative binomial likelihood can capture both self-exciting and cross exciting
properties in discrete data. This method was developed to be applied to text data,
which has a similar form to xi. The log likelihood is as follows:

log(p(xi|zi)) =
n∑
i=1

log
(
xi − 1
ri − 1

)
+ ri log(pi) + (xi − ri) log(1− pi)

where exp(ri) = Decoder1(zi), logit(pi) = Decoder2(zi), and zi = Encoder(xi). As the
negative binomial distribution requires the specification of two different parameters; the
number of predefined successes, r, and the probability of success, p, the method derived
in Zhao et al. (2020) outlines the use of two separate decoders. A discretisation level of
∆ = 1 and a 15 dimensional latent space was used. The following encoder and decoder
structures were used:

Encoder Decoder 1 & 2

Layer 1 75
act = tanh

37
act = tanh

Layer 2 37
act = tanh

75
act = tanh

Table 4.5.: Structure of Encoder and Decoders for the Negative Binomial VAE

The scheme suggested in Zhao et al. (2020) used monotonic annealing to a final K-L
divergence weight of 0.2. Due to the anticipated inference frameworks as outlined in
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Section 3.3.2, the latent space required a more strict K-L divergence term. Therefore,
it was decided to use the annealing scheme as outlined in Fig 4.1. Exploding gradients
were not encountered as the tanh activation function has a restricted gradient.

Dueling Decoders

The aim of this VAE framework was to construct two decoders given a single encoder
according to methodology derived from the work in Seybold et al. (2019). The encoder
was designed to take input xi = {N (∆)

j }j=1,...,T/∆. The aim of the primary decoder
was to reconstruct θi = {ηi, µi} given the input xi. This was indicated to be possible
due to preliminary results of the Poisson VAE, where the latent space indicated that
θi could be encoded. As the aim of the primary decoder was purely the reconstruction
of θi, the Mean Square Error (MSE) was used as the reconstruction loss. This was
equivalent to assuming a Gaussian likelihood. Given the latent variable, the aim of the
secondary decoder was to reconstruct xi. Due to its performance, a Poisson likelihood
was assumed and the structure matched that seen for Poisson VAE. By implementing
this secondary decoder, it was hypothesised that the posterior of θ, given a data point,
could be sampled from using MCMC. The primary decoder ensured that latent variable
had information about θ explicitly encoded, which was not a guarantee under the Poisson
VAE. The secondary decoder ensured that the latent variable represented the input in
lower dimension as this was required for the inferential framework.
Due to the dual decoder framework, the reconstruction loss was comprised of two

separate terms. The primary decoder contributed through the MSE and secondary
decoder contributed through the log Poisson likelihood. These two terms were of different
magnitudes; the Poisson likelihood was the sum of 100 independent likelihood values,
while the MSE term was a mean error over a two dimensional vector. Therefore, the
reconstruction loss of the Gaussian decoder required re-weighting. This re-weighting
was not exact, but a factor 250 was chosen based on the size of the reconstruction error
seen for the Poisson VAE. The Poisson likelihood was also weighted using a factor of

1
1+K-L weight . This was done as a precaution, to ensure that the VAE would preserve the
prediction of θ as the K-L divergence term was annealed. This was achieved by reducing
the gradient of the secondary decoder reconstruction loss. Therefore, any increase in
reconstruction loss caused by the annealing of the prior, would come from the secondary
decoder.
The VAE was trained for 10,000 epochs and used the annealing scheme outlined in

Figure 4.1. A discretisation of ∆ = 1 and latent dimension of 15 were used. The
structure of the encoder and decoders were as follows:
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Encoder Primary Decoder Secondary Decoder

Layer 1 75
act = ReLU

15
act = ReLU

37
act = ReLU

Layer 2 37
act = ReLU

15
act = ReLU

75
act = ReLU

Table 4.6.: Structure of Encoder and Decoders for the Dueling Decoder VAE

As before for the Poisson VAE, gradient clipping at a value of 1000 was required due
to exploding gradients.

Dual Encoders

This VAE structure was based on the methodology derived in Gabbard et al. (2019).
As explained in Section 3.3.2, the VAE was comprised of two encoders and one decoder.
This idea was explored for application to Hawkes processes as an alternative to the
dueling decoders framework. It was deemed inappropriate due to the decoder receiving
the initial input, xi = {N (∆)

j }j=1,...,T/∆, as well as the latent variable. As shall be
outlined in the following sections, neural networks can predict θi given xi as the input.
Therefore, the size of the contribution made by the latent variable is questionable in this
application.

4.2.2. Bayesian Inference
Due to the positive results produced by the Poisson VAE and in the dueling decoder
framework, the Bayesian inference scheme outlined in Mishra et al. (2020) was applied.
Given a VAE trained on data D, and a new data point y, the inference scheme allows

for sampling from the posterior distribution p(z|y,D). This is achieved using the un-
normalised posterior and MCMC sampling. The unnormalised posterior can be stated
as:

p(z|y,D) ∝ p(y|z)p(z)

As outlined in Section 2.2.5, the form of both the likelihood, p(y|z), and the prior, p(z),
is specified during the training of the VAE.
A sample from the posterior p(z|y,D) can be converted to a sample from the predictive

posterior distribution using a decoder. This converts the posterior sample to a sample
from p(ŷ|y,D). The unnormalised posterior in both the Poisson VAE and dueling decoder
framework has the following form:

p(z|y,D) ∝
∏
j

λj
yj exp(−λj)

∏
i

exp(−0.5(z2
i )) (4.1)

where λj =
(
Decoder(z)

)
j
.

Using Eq. (4.1), MCMC sampling was completed using rStan (Stan Development
Team, 2020).
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Using the Poisson VAE, the decoder was applied to the resulting sample, leading to a
sample of intensities of aggregated Hawkes processes. In the case of the dueling decoders,
the primary decoder which reconstructed θ was used to create a sample from p(θ̂|y,D).
Additionally, the secondary decoder can be applied to the posterior sample to sample
the corresponding intensities.

4.2.3. Testing VAE Performance
As was noted in Section 2.1, the incremental counts of a Hawkes process on the interval
(s, t] follows a Poisson random variable with intensity as given in Eq. (2.4). Therefore,
the reconstruction performance of the Poisson VAE was tested by comparing the recon-
structed Poisson intensities to the integral of the true conditional intensity over intervals
of length ∆. These integrals were calculated according to Eq. (2.4). To compare the re-
constructed intensity and the integrated true conditional intensity, the Normalised Root
Mean Square Error (NRMSE) was used. This is as follows:

NRMSE(y) = RMSE(y)
max y −min y

The reason for selecting NRMSE over the regular RMSE was that the magnitude of the
integrated intensity and thus, the magnitude of the error, rose with the magnitude of α.
Therefore, normalising the error allows for the difference in magnitudes to be accounted
for.
A comprehensive set of tests were conducted by calculating the NRMSE for 100 test

processes using both the Poisson VAE and Dueling decoders. The test processes were
generated with the parameters outlined in Table 4.7.

Parameter Value
Intensity Decay Parameter (β) U(p = 1, q = 3)
Branching Ratio (η) U(a = 0.05, b = 0.8)
Expected Activity (E) 500
Time Horizon (T ) 100
Interval Length (∆) 1

Table 4.7.: Parameter values for VAE reconstruction tests

To further understand the performance of the methods, four processes were simulated
with the following combinations of parameters:
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Parameter Test 1 Test 2 Test 3 Test 4
Intensity Decay Parameter (β) 1 3 1 3
Branching Ratio (η) 0.2 0.2 0.7 0.7
Interval Length (∆) 1
Expected Activity (E) 500
Time Horizon (T ) 100

Table 4.8.: Parameters of VAE reconstruction tests

The NRMSE was calculated for the reconstruction produced by the Poisson VAE and
the Dueling decoders. Bayesian inference for the parameters, θ = {η, µ}, was conducted
and a density plot for p(θ|y,D) was calculated.

4.2.4. Super Resolution
As outlined in Section 3.3.2, this problem may have been approached using the π-VAE
framework (Mishra et al., 2020). However, due to time constraints this was not pursued
and it is believed to remain a viable approach for this problem.

4.3. Supervised Learning
Due to the promising initial results seen for VAEs, in particular the successful encoding
of η and µ into the latent space, it was hypothesised that neural networks possessed the
ability to predict η and µ as a regression task. This was investigated using an initial set
of tests, which were followed by a broad selection of tests due to positive results. The
methodology derived shall be outlined in the following sections, including an extension
to allow for the estimation of α and β.

4.3.1. Estimation of Baseline Intensity and Branching Ratio
The method derived aims to accurately predict both the branching ratio, η and baseline
intensity, µ as a regression task using neural networks. This was hypothesised to be
possible with the incremental count data, xi = {N (∆)

j }j=1,...,T/∆, as input due to the
initial results with VAEs. Given a set of test processes {yi}i=1,...,m with horizon T and
discretisation step ∆, 100,000 training data processes were generated according to the
method outlined in Section 4.1.1. The test data points {yi}i=1,...,m, are realisations of
Hawkes processes with the same conditional intensity function parameters. Both m
disjoint observations of length T/∆ and m segments of a single observation of length
mT/∆ were used with the supervised learning method.
A feed forward MLP with input dimension T/∆ was used. The network contained six

hidden layers with T neurons in each layer. The output layer consisted of two neurons,
which represent θ = {η, µ}. The hidden layers used the ReLU activation function and
L2 regularisation with weight 0.001. The final output layer used the linear activation
function. Despite the output range being strictly non-negative, the addition of a ReLU
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activation function caused issues with performance. This general network structure was
designed with the aim of unsupervised deployment of a supervised learning algorithm.
The aim of this network’s design was to ensure that the learning was not limited by
neuron capacity. However, in the event that the capacity was too large, the regularisation
term would ensure that unnecessary neurons were down weighted. While this design may
not be optimal for all applications it provides sufficient flexibility for most.
The network was trained for a maximum 500 epochs with early stopping defined

to be less than a 0.01 reduction in validation loss over 25 epochs. This meant most
applications trained fully within 200 epochs. A validation split of 0.05 was used to
monitor performance.

4.3.2. Estimation of Self Excitation and Intensity Decay
Neural networks

Despite promising results for the prediction of η and µ using neural networks, initial
results did not indicate the same performance for predicting α and β. The network
structure and training scheme used were the same as seen in Section 4.3.1.

Linear model

Given that α and β could not be directly estimated using neural networks, the subsequent
aim was to investigate alternative methods. As an estimate of η could be calculated using
the method outlined in Section 4.3.1, it was only necessary to derive a method to estimate
either α or β, due to the relation η = α

β .
A hypothesis was formed that the maximum value of xi = {N (∆)

j }j=1,...,T/∆ would
be a descriptive statistic for the value of αi. This hypothesis can be explained using
two arguments, the first relies on the decrease in expected waiting time due to an event
and the second relies on the contribution of an arrival to the conditional intensity. As
mentioned in Section 2.1, the incremental counts of a Hawkes process follow a Poisson
random variable defined by the integral of its conditional intensity. This link shall be
utilised in both arguments.
For an inhomogeneous Poisson process, the inter-arrival times, {τi}i=1,...,m, are distrib-

uted according to an inhomogeneous exponential distribution with the same intensity
function. The conditional intensity of a Hawkes process jumps by a value of α at the
moment of an event. This jump in intensity leads to a corresponding jump in intensity
in the distribution of arrival times. Using that X ∼ Exp(λ) → E(X) = 1/λ, a jump in
intensity of size α leads to a decrease in the expected waiting time which is proportional
to the value α.
For example, suppose two processes with equal values of η and µ, have differing values

of α and β. While both processes have the same level of expected activity, the form of
the conditional intensity of the processes shall be very different. The larger the value
of α, the larger the increase in intensity after an event, leading to a larger decrease
in expected waiting time. However, this is momentary, as the expected activity of the
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processes is equal. The process with the larger value of α shall have a corresponding
larger value of β. This means the larger jump in intensity shall decay faster. This larger
jump and shorter term decrease in expected waiting times was hypothesised to result in
a large maximum value of N (∆)

j due to clustering of events within a bin.
The alternative argument relies on examining the contribution of the self-exciting

function to the conditional intensity. Given a Hawkes process with the exponential
kernel and branching ratio, η, suppose an event occurs at time t. The contribution
to the conditional intensity of that event up to time t + δ can be calculated using the
following: ∫ δ

0
α exp

(
− α

η
s

)
ds = η

[
1− exp

(
−
(α
η

)
δ

)]
Looking at this equation, it should be noted that as stated in Section 2.1, as δ →∞ then
the RHS of the equation tends to η. However for a small δ, a larger value of α results
in larger value of intensity due to the self-exciting function. This larger contribution to
intensity was hypothesised to result in a large maximum value of N (∆)

j due to clustering
of events within of bin.
Using this hypothesis, the following methodology was formed to identify the value of α

and β using η̂. This methodology was formed to be used in conjunction with the neural
network prediction outlined in Section 4.3.1 but can easily be adapted to work with other
η estimation methods. The aim of the method was to form training data which had an
approximately linear relationship with the value of α and fit a linear model to it. Initial
results using the maximum incremental count suggested there was too much variability
in the observed maximums over short horizons. However, categorising processes by the
value of α, and taking the mean maximum incremental count allowed for a predictive
relationship. This was achieved as follows:

Given m discretised test processes, {yi}i=1,...,m, with time horizon T and a discretisa-
tion step size of ∆, the following steps were taken estimate α and β:

1. Using an estimate of η, η̂, generate training processes, {xi}i=1,...,n, using the
method outlined in Section 4.1.1 with ηi ∼ U(η̂ − δη, η̂ + δη). Note: δη is chosen
by the user, according to the confidence in η̂.

2. For k = 1, . . . ,K, Calculate:

sk = meani({max
j

(xij) | αi ∈
[
(k − 1)δα, kδα

)
})

where K = dmaxi(αi)/δα)e and δα is chosen depending on the level of variability
in the data.

3. Using sk as the independent variable, a normal linear model is fit to the response
(k − 0.5)δα

4. Calculate the median value of maxj(yij)

5. Using the fitted linear model, predict the corresponding value of α̂.

6. Calculate β̂ = α̂
η̂
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4.3.3. Testing and Comparison
Testing Effects of Parameters

To understand the performance of the method outlined in Section 4.3, a set of com-
prehensive tests were derived. The tests consisted of a set of 100 randomly sampled
conditional intensity parameters. For each set of parameters, 200 realisations of an ag-
gregated Hawkes process were generated. The parameters of the generated processes
were estimated and the error on each set of parameter estimates was calculated. The
error was taken to be the difference between the true values and estimated values. The
distributions of the errors were then examined.
The parameters of interest were the parameters which directly influenced the creation

of the training data. The testing data was assumed to come from the true underlying
distributions which were used to generate the training data. In particular, the effect of
the following parameters were investigated: the branching ratio η, the rate of decay β,
the discretisation step size ∆, and the expected activity E. Each parameter was tested
separately to ensure no interactions. The following default values were used:

Parameter Default Value
Intensity Decay Parameter (β) U(p = 1, q = 3)
Branching Ratio (η) U(a = 0.2, b = 0.6)
Expected Activity (E) 500
Time Horizon (T ) 100
Interval Length (∆) 1

Table 4.9.: Default Parameter values

A range of values were selected to test each parameter. The values tested for each
parameter were as follows:

Intensity Decay
Parameter (β)

Branching Ratio
(η)

Interval Length
(∆)

Expected
Activity (E)

[0.5,2.5] [0.1,0.4] 0.25 50
[1.75,3.75] [0.3,0.6] 0.5 100

[3,5] [0.5,0.8] 1 250
[0.5,3] [0.1,0.6] 2 500
[1.5,4] [0.2,0.7] 5 1000
[2.5,5] [0.3,0.8]
[0.5,4] [0.05,0.6]
[1.5,5] [0.05,0.7]
[0.5,5] [0.05,0.8]

Table 4.10.: List of Parameter Ranges/Values tested
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4.3.4. Comparison of Parameter Estimation Methods
To further understand the distribution of the errors, the method derived in Section
4.3 was compared to the MC-EM algorithm derived in Shlomovich et al. (2020). This
method was chosen for comparison as it was shown to outperform both the binned log
likelihood and the INAR(p) methods. The errors for the maximum likelihood estimates
were also calculated as a benchmark of performance in a continuous time setting.

A set of 100 test processes with a time horizon of T = 1000 were generated using
randomly sampled conditional intensity function parameters. An estimate of the para-
meters for each process was calculated using each method. Each test process was split
into 10 subsections of length T = 100 to allow for prediction using the supervised learn-
ing method. The test processes were generated in this way to ensure that each method
used the same data. The supervised method was also tested in a "high data" environ-
ment by generating 200 realisations of length T = 100 for each of the testing parameter
sets. The test processes were generated using the following values:

Parameter Value
Intensity Decay Parameter (β) U(p = 1, q = 3)
Branching Ratio (η) U(a = 0.5, b = 0.8)
Expected Activity (E) 1000
Time Horizon (T ) 1000
Interval Length (∆) 1

Table 4.11.: Default Parameter values
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5. Results & Discussion

The results presented in this chapter are separated into two sections. The first contains
an analysis of the performance of the VAEs which were outlined in the previous chapter.
Particular attention is paid to the performance of the Poisson VAE and the Dueling
decoder framework. This section also includes an example of the MCMC sampling for
both VAEs. The second section shall contain the results of the comprehensive set of tests
conducted on the supervised learning algorithm. This is concluded with a comparison
of performance with the MC-EM algorithm and Maximum likelihood estimates.

5.1. Evaluation of Variational Auto-Encoders
The results for the Poisson VAE of the reconstruction of the four test processes outlined
in Table 4.8 are presented first. The results to tests 1-2 and tests 3-4 are presented
in Figures 5.1 and 5.2 respectively. As outlined in Section 4.2.3, these figures consist
of a comparison of the reconstructed intensity and the integral of the true conditional
intensity for each process. This is followed by the reconstruction of the four test processes
using the Poisson decoder trained under the Dueling decoders framework. A density plot
of the sample from the joint distribution of θ = {η, µ} is also presented. The results to
test 1,2,3, and 4 are presented in Figures 5.3, 5.4, 5.5, and 5.6 respectively. Finally, a
comparison of the NRMSE achieved by the Poisson VAE and Dueling decoder on the
100 test processes outlined in Table 4.7 is presented in Figure 5.7.
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(a) Test 1: {α, β, µ} = {0.2, 1.0, 4}

(b) Test 2: {α, β, µ} = {0.6, 3.0, 4}

Figure 5.1.: Reconstruction of Integrated Intensity using Poisson VAE

The reconstruction of test 1 is shown in Figure 5.1a. This test scored the highest
reconstruction error of 0.2649. Of interest is the overestimation of the spike in intensity
seen at time 75. This is one of the few occasions where the VAE over-estimates the size of
a significant spike in the reconstruction. This indicates that an unusual event occurred in
this process, with a very large spike in the number of events at this bin. The performance
on the section before 50 time units is better, with the reconstructed intensity capturing
the rise and fall in intensity after time 10 very well. The reconstruction also manages to
capture the final spike at approximately time 90.

The reconstruction of test 2 is shown in Figure 5.1b, the performance on this process
is much improved compared to the last. Disregarding the dip in intensity before time
25, the reconstructed process manages to approximate the general rise and fall. The
reconstructed process is much smoother when compared to the true integrated intensity.
This appears to be a common occurrence. This is an understandable result of the
compression to the latent space as precise information about the intensity is lost. A
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(a) Test 3: {α, β, µ} = {0.7, 1.0, 1.5}

(b) Test 4: {α, β, µ} = {2.1, 3.0, 1.5}

Figure 5.2.: Reconstruction of Integrated Intensity using Poisson VAE

NRMSE of 0.2280 is relatively high. This is most likely caused by the dip before time
25 and the underestimated spike at time 45.

The reconstruction for test 3 is seen in Figure 5.2a, and scores the lowest reconstruction
error of any of the processes demonstrated. With a NRMSE of 0.1143, the reconstruction
captures each peak and trough very well, though the peaks between time 25 and 50 are
slightly underestimated. This plot is a perfect example of when the VAE performs
exceptionally and, as will be seen later, this performance should not be expected in the
current implementation. This reconstruction performance does indicate the potential of
the method.
Figure 5.2b shows the reconstruction of test 4 under the Poisson VAE. A similar

smoothing property as was seen for the lower η process in Figure 5.1b is seen here. The
peaks of the true intensity are much higher when compared to the reconstructed process.
The NRMSE value of 0.214 is the third highest out of the tests presented and can be
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(a) Reconstruction

(b) Density plot of Predictive posterior for θ

Figure 5.3.: Performance of Dueling Decoders on Test 1: {α, β, µ} = {0.2, 1.0, 4}

attributed to this smoothing. In particular the reconstructed process seems to merge
peaks of high activity, for example the 4 peaks seen before time 25 are reconstructed
using only two peaks. This reconstruction results in a high error even though periods of
raised intensity were captured.
Figure 5.3a shows the reconstruction of test 1 in the Dueling decoder framework. Des-

pite the lower NRMSE of 0.1928, the peaks of the integrated intensity are estimated to
be much lower than in the Poisson VAE and seemingly were not captured. In particular,
the peaks and troughs seen before time 50 are reconstructed poorly when compared to
the Poisson VAE. However, the spike in reconstructed intensity at time 75 has been
removed by the primary decoder and this led to an interesting result seen in Figure 5.3b.
This figure shows the true value of η being located less than 0.05 away from the peak
of the joint density. This strong reconstruction of θ suggests that the intensity of the
process is quite abnormal for the parameters and the θ decoder influenced the placement
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(a) Reconstruction

(b) Density plot of Predictive posterior for θ

Figure 5.4.: Performance of Dueling Decoders on Test 2: {α, β, µ} = {0.6, 3.0, 4}

of this process in latent space. This would explain the loss of peaks in intensity in the
reconstructed process when compared to Figure 5.1a, as high peaks in intensity should
be a rare event with a low branching ratio.
Figure 5.4a shows the reconstruction of test 2 in the Dueling decoder framework. The

NRMSE of 0.1747 is significantly lower than the value seen for the Poisson VAE. However
on this occasion, as seen with the previous figure, the overall peaks and troughs of the
reconstructed intensity do not match the integrated intensity as well as the Poisson VAE.
Looking at Figure 5.4b, the estimation of η seems strong, with the true value of η lying
almost exactly on the taller peak of the multi-modal distribution seen. Therefore, once
again, a trade-off has been seen where the reconstruction of the process is influenced in
a negative manner by the primary decoder. However, this influence being negative is in
spite of the lower NRMSE.
The reconstruction of test 3 under the Dueling decoder is shown in Figure 5.5a. While
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(a) Reconstruction

(b) Density plot of Predictive posterior for θ

Figure 5.5.: Performance of Dueling Decoders on Test 3: {α, β, µ} = {0.7, 1.0, 1.5}
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(a) Reconstruction

(b) Density plot of Predictive posterior for θ: {α, β, µ} = {2.1, 3.0, 1.5}

Figure 5.6.: Performance of Dueling Decoders on Test 4

the NRMSE is higher when compared to the Poisson reconstruction, the reconstruction
performance is still strong. The peaks and troughs are mostly captured with the excep-
tion of the peak immediately after time 25. The result seen in Figure 5.5b shows a very
tight density around the true value of θ = {0.7, 1.5}. The performance seen in this pair
of plots shows the huge potential of this method, allowing the integrated intensity to be
reconstructed well, and a strong estimate of the density of θ to be produced.

A slight increase in NRMSE is seen for the reconstruction of test 4 in Figure 5.6a
when compared to the Poisson VAE. Though as before, this trade-off is made due to the
influence of the primary decoder which performs very well. The density seen in Figure
5.6b has the peak located less than 0.05 away from the true value of η and 0.15 away
from the true value of µ.
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Figure 5.7.: Comparison of Reconstruction Performance

Figure 5.7 shows the NRMSE as a measure of reconstruction performance over 100 test
processes. It can be seen that the two VAEs have similar distributions, with the Poisson
VAE being shifted slightly lower when compared to the Dueling decoder. However,
as seen previously the magnitude of NRMSE is not a complete metric and to fully
understand the reconstruction performance would require further work.

Discussion of Overall Performance

The reconstruction performance of the Poisson decoder and density estimates produced
in the Dueling decoder framework highlight the potential of the methodologies outlined.
The Poisson VAE managed to reconstruct the integrated intensity well in most cases,
managing to capture the peaks and troughs of the intensity. The Dueling decoder frame-
work had a measurable effect on the reconstruction performance and this was as expec-
ted. Recall, the reconstruction loss of the intensity was reduced as the K-L divergence
was annealed to ensure that the accuracy of parameter reconstruction was preserved.
This was due to the particular interest in sampling from the density of θ. Given that
reconstruction of the processes was of interest, it is possible that with slight alterations
to the annealing scheme, the performance of Poisson decoder under the Dueling decoder
framework could be improved. For example, if the weight of the θ reconstruction loss
was reduced with the K-L divergence annealing, it is possible the resulting decoders
may have outperformed the Poisson VAE in terms of intensity reconstruction. This is a
suggested area of future research as strong reconstruction performance could hold great
value in cases of low data quantity, as using the Bayesian inference outlined could allow
for samples of aggregated Hawkes processes to be drawn while preserving the underlying
unknown conditional intensity parameters.
It is worth noting that the training of the VAEs was challenging. As mentioned

previously, the size of the latent dimension restricted the performance greatly. For
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example, when only 2 latent dimensions were used, the resulting reconstructed intensities
for any test process were approximately constant at the level of expected intensity.
Despite this, the latent space seemed to encode θ but was unable to extract meaningful
representations. The latent dimension of 15 was chosen to provide the flexibility to
reconstruct the input. Replicating these results with a lower dimensional latent space is
an area which requires further research.

Comment on Bernoulli and Negative Binomial VAE Performance

Results are not presented for the Bernoulli and Negative Binomial VAEs for the sake
of brevity. The Bernoulli VAE failed to reconstruct the Hawkes processes due to their
sparsity. This was due to the high level of discretisation needed to convert the Hawkes
process to binary form. The step size required was as low as 10−5 in magnitude. It
should be noted that if a process is discretised to a level in which its aggregated form
is binary, the loss in performance from converting the binary vector to approximate
event times and using traditional parameter estimation methods such as MLE would be
minimal.
For the Negative Binomial VAE, the performance of the reconstruction was difficult to

measure as, unlike the Poisson VAE, the Negative Binomial distribution does not share
a link with the Hawkes process. Comparing the expected value of the Negative Bino-
mial random variables with the integrated intensity did not indicate good performance,
however this was a sub-par measure. Due to the claims made in Zhao et al. (2020), this
VAE still holds potential for this application.
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5.2. Evaluation of Supervised Learning Method
The results presented in Section 5.2.1 demonstrate the effect that the parameters which
can be varied during training can have on the errors associated with the estimation of α,
β, µ. The ranges/values of parameters tested are outlined in Table 4.10. The comparison
outlined in Section 4.3.4 between the supervised learning method, MLE, and the MC-
EM algorithm (Shlomovich et al., 2020) can be seen in Section 5.2.2. This is followed by
a discussion about the performance of the supervised learning method in Section 5.2.3.

5.2.1. Test of Effect of Parameter Values/Ranges
The results which demonstrate the effect that the range of β has on estimation are
presented in Figure 5.8. This is followed by Figure 5.9, which shows the effect that ∆
has on estimation. The effect of the range of η has on estimation error is presented in
Figure 5.10. This section is concluded with Figure 5.11 which shows the performance of
the supervised learning method when the expected activity of the processes are varied.

Testing the Effect of the Range of Beta

First, it should be noted that the range of values which β can take affects the range of
values which α can take. Recall that the default values of η are [.2, .6] as outlined in
Table 4.9.
Looking at Figure 5.8, note the long negative tails in the distributions across all three

plots. As the error is calculated as the predicted value minus the true value, this indicates
the method underestimates all three parameters more often than it over estimates.
Looking at Figure 5.8a, the estimation error is generally consistent, with the inter-

quartile ranges for all β ranges being approximately within ±0.5. Note that the three
box-plots with the thinnest tails are when the range of β is (0.5, 2.5), (0.5, 3), and (3, 5).
This would suggest the range of β has a slight effect on the estimation of α. Looking at
the difference in magnitudes between β ranges (0.5,3) and (3,5), this may indicate that
the magnitude of β does not affect the prediction of α. The longest tailed distribution
appears when β ranges from (1.5,5). However, the long tails observed for this range of
β values can be attributed to outliers. This can be concluded due to the performance
when β ranged from 0.5 to 5.

Looking at Figure 5.8b, first note the change in scale on the y-axis. Also note that
the performance of η prediction can be inferred by comparing Figure 5.8a and Figure
5.8b. It can be seen that the estimation of β appears to depend more significantly on
the range of the values taken. In particular, note the shorter tail seen for (3,5) in the
previous plot has disappeared. This suggests that the estimation of η is dependent on
the magnitudes of β. This appears to be a consistent trend of lower valued ranges of
β leading to lower errors and higher valued ranges leading to larger errors, as the three
longest tailed distributions are those which have an upper value of 5.

Finally, examining Figure 5.8c, the magnitude of β has a distinct effect on the estima-
tion of µ. This is most obvious when comparing the first four ranges, which have longer
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(a) Effect on α estimation

(b) Effect on β estimation

(c) Effect on µ estimation

Figure 5.8.: Testing the Effect of the Range of β on the Supervised Learning method
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tailed distributions as the maximum value increases. This confirms the conclusion drawn
from the previous plot and allows for the conclusion that the estimation of β (through
η) and µ are affected by the magnitude of β, while α is not.

Testing the Effect of the Value of Delta

Figure 5.9 shows the distribution of errors for all three parameters at multiple values
of ∆. While the tails of the distributions remain quite long, in particular the negative
tails, the overall performance appears to be quite similar across all discretisation levels.
For Figure 5.9a, the interquartile ranges are all within ±0.5 with the whiskers of the
plot being inside ±1.0 for all discretisation levels. This performance is incredibly strong
allowing for discretisations of 5 time units with only a marginal drop in performance.
This result is surprising as the effectiveness of this estimation method should be directly
linked to the level discretisation. This can best be seen by considering the change in
maxi(N (∆)

i ) as ∆ tends to extremes. In particular, as ∆→ 0, the maximum count of a
process given an event occurred shall tend to 1 regardless of the value of α. Similarly,
as ∆ → T , the maximum count shall tend to the total number of events seen over the
horizon. As T →∞, this statistic shall tend to the expected activity which is dependent
on η and µ rather than α.

Looking at Figures 5.9b and 5.9c, the results are approximately similar with good
performance at all levels. There is slightly more deviation when ∆ = 5. This suggests
the neural network is slightly more affected by the level of discretisation, however this
difference is slight, potentially allowing for tuning of the neural network structure to
overcome this difference. Alternatively, the neural network may require a longer time
horizon at larger levels of discretisation. In conclusion, prediction performance for all
three parameters is broadly unaffected by the level of discretisation.
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(a) Effect on α estimation

(b) Effect on β estimation

(c) Effect on µ estimation

Figure 5.9.: Testing the Effect of the Value of ∆ on the Supervised Learning method
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Testing the Effect of Range of Eta

The range of η has an effect on the ranges of α and µ due to the data generation process.
Figure 5.10, shows the same distribution of errors seen in the previous two tests, where
the long negative tails are a primary feature. However, these tails are more consistent
across each set of ranges. Examining Figure 5.10a, note the tight inter-quartile ranges
and short whiskers. The plot suggests that while the inter-quartile range and whiskers
are not affected by the range of η, that the severity of outliers is lower for high values
of η. This can be seen by careful examination of the first three and the last boxplot
in Figure 5.10a. This relationship is intuitive as the higher values of η allow for larger
ranges of α which would make the linear model less susceptible to outliers.
Looking Figure 5.10b, the distribution of errors appears to have a strong consistent

trend with a few extreme outliers less than−2. The trend of increased outlier distribution
and higher values of η appears to be more subdued, suggesting that this trend is present
for α estimation but not present for η estimation. The extreme outlier of -4, seen for
the η range of (0.05,0.8), appears to be due to the neural network prediction of η. This
conclusion can be drawn as the outlier is not present for prediction of α but is present of
the prediction of µ. Figure 5.10c appears to have a relation between the estimation of µ
and the range of η. The trend appears to be similar to that seen for α with high ranges
leading to lower errors. However, this may be due to higher ranges of η leading to lower
ranges of µ and while the magnitudes of the errors change, the relative error may not
change. In conclusion, the performance is widely stable but concern for outliers would
be prudent for lower ranges of η.

Testing the Effect of the Value of Expected Activity

Examining the effect of expected activity gives a good insight into the estimation ac-
curacy. Note, the previous tests were conducted with an expected activity of 500. Due
to the performance of the estimation being consistent across all levels of discretisation,
one may have expected similar results for expected activity. However, recall that the
expected activity directly affects the values which µ can take. Due to the fixed η range,
a higher expected activity corresponds to a higher range of µ. The first item to note
when examining Figure 5.11, is the long negative tails which have been a feature of
the previous 3 tests are balanced by positive outliers in the low expected activity box-
plots. This means the consistent under-estimation of parameters is directly caused by
the higher values of µ distorting the self-exciting property. This comes with the caveat
that the total number of outliers appears to be lower for higher expected activity. This
is particularly evident looking at Figure 5.11c, where the bounds on the outliers are
tighter for the higher values of expected activity. The reason this is of interest, is the
values of µ are larger at these values of expected activity meaning that the relative error
is significantly lower on µ estimation for these values. This leads to the conclusion that
the overall performance is relatively unaffected by the expected activity however there
are concerns with the tails of the error distribution which appear to be thicker for smaller
values of expected activity.
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(a) Effect on α estimation

(b) Effect on β estimation

(c) Effect on µ estimation

Figure 5.10.: Testing the Effect of the Range of η on the Supervised Learning method
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(a) Effect on α estimation

(b) Effect on β estimation

(c) Effect on µ estimation

Figure 5.11.: Testing the Effect of the Value of Expected Activity on the Supervised
Learning method
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5.2.2. Comparison with MLE and the MC-EM Algorithm
The parameters of the test which produced the results which are presented in this section
were outlined in Section 4.3.4. This test comprises of a comparison of the estimation
error produced by the supervised learning method, MLE, and MC-EM algorithm (Shlo-
movich et al., 2020) on 100 test processes. This comparison is presented in Figure 5.12.
Examining Figures 5.12a and 5.12b, the supervised learning method with both quant-
ities of data performs worse than the MC-EM algorithm. However, the difference in
performance between the high data supervised method and the MC-EM algorithm is
less significant. It should be noted that the high data estimation uses 20 times more
data than that of the MC-EM algorithm. The largest outlier for the high data supervised
learning method is double the magnitude of that of the MC-EM algorithm. Neither of
the aggregated methods managed to perform as well as the maximum likelihood estim-
ates, however this is as expected. The estimation of β is where the supervised learning
method performs best when compared to the MC-EM algorithm with the distribution
being very similar. This does not hold when the supervised learning method is used
on the same quantity of data. Looking at Figure 5.12c, the remarkable performance
of the MC-EM algorithm manages to significantly outperform the supervised learning
method and even maximum likelihood estimation. It can be concluded that the MC-EM
algorithm performs better across all three parameters. While the high supervised learn-
ing errors are close (for α and β) to the MC-EM algorithm, the error distributions have
significantly longer tails for all three parameter estimates when an equal amount of data
is used. This does not mean that the supervised learning algorithm is not a beneficial
development, the arguments for which shall be presented in the next section.
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(a) Comparison of α estimation

(b) Comparison of β estimation

(c) Comparison of µ estimation

Figure 5.12.: Comparison of Parameter Estimation Methods
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5.2.3. Discussion of General Performance and Comparison
The results seen in Sections 5.2.1 and 5.2.2 have a followed a similar trend. It can be
concluded that the tails of the errors distribution are long but that general performance
of the algorithm is positive. It is possible that the tails of the distributions seen in
the test environment are unfavourable on the method as they represent an unsupervised
application of supervised learning algorithms. The hyper parameters used were not tuned
for optimal prediction in each test and it is possible that these outliers could be minimised
through proper application of these methods. This is particularly relevant for estimation
of α which is conducted using a linear model. The data generated to fit the linear model
was not checked for outliers or to ensure the underlying assumptions of a normal linear
model were not violated. When taking this into account, it can be concluded that
this method holds a large potential for prediction of parameters underlying aggregated
Hawkes Processes. The training is robust to a range of parameters, most notably the
level of discretisation. While this method did not achieve more favourable results at
lower levels of discretisation as seen for other methods in Shlomovich et al. (2020), it
achieved comparable results when a process was observed in steps of 5 time units. This
performance was admirable, and would likely out-perform the MC-EM algorithm in this
setting, though further testing would be necessary for this to be proven. Given the robust
nature of the algorithm, with the caveat of proper training and hyper-parameter tuning,
which is available when being deployed in a non testing environment, this algorithm
poses value despite it being outperformed by the MC-EM algorithm.
The main benefit of this algorithm is a reduction in computational time. Once a

neural network has been trained the estimation time is very low, allowing for hundreds
of processes to estimated with ease. This is in contrast with the MC-EM algorithm
which does not benefit from this speed up. It should also be noted that in its current
implementation the MC-EM algorithm took multiple hours to conduct the tests seen in
Figure 5.12, whereas the supervised learning method took less than 10 minutes including
data generation. Therefore, the supervised learning method should be significantly faster
even when neural network training time and hyper parameter tuning is accounted for.
This was utilised in the high data test, as the supervised learning method could easily
predict the parameters of more sub processes without a penalty in time. This allowed
the supervised learning method to gain performance with little trade-off to run time.
This would not be possible with the MC-EM algorithm as it would require a much longer
run time and would have been unlikely to see the same gains in performance. It could
be hypothesised that in applications where imprecise recording of event times leads to
these aggregated Hawkes processes, such as finance or network data, that data quantity
is unlikely to be a problem. Another advantage of the supervised learning method is
that the main contribution to run time is the horizon and input dimension, as these
will affect the number of neurons in the MLP to be trained. This means the training
time is not affected adversely by an increase in expected activity. This does not hold
for the MC-EM algorithm and this is the reason that expected activity was reduced
from 5 events per time unit to 1 event per unit when compared to Section 5.2.1. The
level of expected activity was set to 5000 for the comparison test initially, however this
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was reduced to 1000 as the expected run time for the MC-EM algorithm was over one
week. The efficiency of the MC-EM algorithm may improve as the concept is further
developed but the sequential sampling used results in the computational times being
linked to expected activity. As previously mentioned this does not affect the supervised
learning method, which is dependent on the size of the neural network. The methodology
outlined in the Section 4.3, could also be argued to be more accessible due to the simple
nature of the MLP and the linear model used, both of which are widely understood
and taught at undergraduate level. A further advantage is that the supervised learning
method can utilise disjoint subsections of a process to improve performance, whereas the
MC-EM algorithm requires a single uninterrupted process to make accurate estimation.
Therefore, the supervised learning method has an advantage in which it can be applied
in the case of disjoint observations.
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6. Conclusion

This thesis aimed to address the problem of parameter estimation for Hawkes processes
when the event times had been censored due to imprecise observation. This imprecise
observation leading to aggregated Hawkes processes is a growing problem for conducting
statistical inference on Hawkes processes in areas such as finance and cyber-security.
The aim of this thesis was to alleviate these problems surrounding statistical inference
using deep learning.
The work with Variational Auto-Encoders has established the viability of the Bayesian

Inference proposed in Mishra et al. (2020) for aggregated Hawkes processes. The VAE
with Poisson likelihood demonstrated the ability to reconstruct the underlying integ-
rated conditional intensity in an unsupervised manner. This was achieved while also
successfully encoding the branching ratio, η, and baseline intensity, µ, into the latent
space. Under a Dueling Decoder framework, the Poisson decoder was used as a second-
ary objective to shape the latent space and, through the primary encoder, allowed for
the estimation of the underlying parameters η and µ. This Dueling decoder framework
was demonstrated to allow for the joint distribution of η and µ to be accurately estim-
ated through MCMC sampling. This methodology has the potential to be a powerful
technique which allows for statistical inference around the parameters of an aggregated
Hawkes process despite the censored event times. The structure of the encoder and
decoders are an element which may benefit from further development. For example,
auto-regressive neural networks such as recurrent neural networks may posed value to
this methodology. The level of compression achieved was 15% of the original dimension,
however this is an area that also warrants further study. It is possible that the learning
of disentangled latent representations is possible using a method such as β-VAE (Higgins
et al., 2016).
The novel application of supervised learning algorithms proposed for the estimation

of α, β, and µ was shown to perform robustly for many parameter ranges. Of particular
note is the consistent estimation across different levels of discretisation. Despite the
long tailed error distributions which were seen, the proposed method performed close
to the level of the MC-EM algorithm (Shlomovich et al., 2020) with distinct advantages
in computational time, accessibility, and flexibility regarding data. The lower computa-
tional time of the method proposed in this paper will lead to significant time savings,
especially in the case of high expected activity processes. The flexibility regarding data
and increased accessibility ensures this method has a wider range of use cases. Sugges-
ted areas for further study include an investigation into the viability of the method for
other kernel forms, the potential of other supervised learning techniques, and the use of
auto-regressive neural networks such as recurrent neural networks.
This thesis has established two new methodologies for performing statistical inference
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surrounding parameter estimation of Hawkes processes when event times have been
censored. This area of study has only begun to develop recently as an extension of
Hawkes processes. The methods presented in this thesis form a significant contribution
to the area and shall hopefully establish a foundation of study in conjunction with the
work in Shlomovich et al. (2020).
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A. Appendix

A.1. Code Repository
The code used to generate the results seen in this thesis is available on the following
Github:

https://github.com/tom-keane/Statistical_Inference_for_Hawkes_Processes_with_
Deep_Learning

Please note, the code which generated the results for the MC-EM algorithm is withheld
at the request of Shlomovich et al.. This is due to the github being public, and an
agreement between myself and Shlomovich et al. to withhold the results from the public
until their paper (Shlomovich et al., 2020) has passed peer review.
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